

Alessandra RAVASIO

Astrophysique de laboratoire en France

PNPS Montpellier, 26-28 March 2018

Inertial Confinement Fusion

Very high compressions and temperatures required

Development of HIGH POWER PULSED MACHINES : Z-PINCHES, HIGH ENERGY LASER

High Energy lasers: an opportunity for astrophysics

Generation of ultra-dense-matter to high temperature plasmas, including a variety of astrophysical objects

Two large facilities in France

- * LULI 2000: the most powerful academic laser in EUROPE (Region parisienne)
 - 2 beams 2KJ, 1.5ns
 - |K| beam, |.5ns + |00| | ps (probes) •

*LIL (2002-2014) :

***APOLLON** prototype LMJ quad-9kJ (2018-2019?): 100J, 15fs

LMJ: 176 beams, 1.3 MJ, 1.5ns PETAL: IKI I ps

Two large facilities in France

- * LULI 2000: the most powerful academic laser in EUROPE (Region parisienne)
 - 2 beams 2KJ, 1.5ns
 - |K| beam, |.5ns + |00| | ps (probes) •

*LIL (2002-2014) : *APOLLON

prototype LMJ quad-9kJ (2018-2019?): 100], 15fs

LMJ: the most powerful laser in EUROPE (Aquitaine)

> LMJ: 176 beams, 1.3 MJ, 1.5ns DETAL. IVI I ~~

GEKKO XII (Japan), OMEGA, NIF, MEC (USA), ORION, VULCAN (UK), PALS (Tcheque Reppublic)

Outline

- * Which conditions
- * Which diagnostics
- * Overview of lab-astro experiments in France
- * Examples of experiments:
 - ► EOS
 - POLAR

Which plasmas we can generate?

Which diagnostics?

Laboratory astrophysics

Three different kind of experiences

- * **IDENTICAL** : the physics is exactly the same. They furnish precise data, which are not directly measurable in space. *EOS*, *Opacities*, *x*.
- * **SIMILAR** : they are defined by precise scaling laws. Possibility to study temporal evolution and modify initial and boundary conditions. *POLAR*, *Jets*, *Shocks and instabilities*, *accretion in YSO*
- * **RESSEMBLANT** : we do not have scaling laws, but we can explore the mechanism and get insight of the major *Self-generated B fields*, *particle acceleration, relativistic plasmas, Nucleosynthesis in lab, magnetic reconnection*

Identical 1-EOS

Huser, Henry, Denoeud, Bolis, Guarguagini, etc..PhD

Over nearly 2000 known planets, most have internal pressure between IMbar to 10

see also F. Subiran talk

Identical 2-OPACITY

Stars longevity partially determined by stellar opacity

→ experimental measurements in astrophysical
relevant conditions are needed.

Similar 1- Plasma jets

l'Observatoire

Cez

LERMA

l'Observatoire LERMA Similar 2- Strong shock & Hydro instabilities

CELIA

Similar 3- Accretion dynamics

Soft x-rays absorbed in the dense shell

Yurchak, BoPhD HEDP 2012, Nat Com 2016,2018... In POLAR: accretion column

CQ2

bservatorre

CELI/

LERMA

Generation, dynamics and stability of reverse shock

Ressemblant 1 - Self generated B fields

(solid lines), with the Compton drag term omitted (long-dashed line), with the stretching and the Compton drag terms omitted (short-dashed line), and with the compression and the Compton drag terms omitted (dotted line).

dotted and solid lines in Figure 2 shows that the Biermann battery at that time is on average about 10 times more important than the induction term, in agreement with our

results on a several tens of percent level. However, since we

does not lead to a substantial underestimate of the magnetic

field strength produced in our simulations. This test is not,

however, completely conclusive because of the excess small-

scale power present in run C, and therefore we cannot

(dotted lines), and C (dashed lines).

shifts we expect that the magnetic field has to be closely

Ressemblant 2- Magnetic Reconnection

Ressemblant 3- Nucleosynthesis

perspectives

Vassura PhD					
Ultra high brig	ghtness neut	rons to study		Studying	of r-processes in lab and
nucleosynthes	sis in the lab			plasmas	
Facility	Peak neutron flux (neutrons/[cm².s])	Average neutron flux (neutrons/[cm ² .s])	Neutron bunch duration (ns)	R e p e ti ti o n rate (Hz)	
ILL (reactor)	~10 ¹⁵	~10 ¹⁵	(continuous)	(continuous)	
SNS (accelerator)	~10 ¹⁶	~10 ¹²	~1 µs	60	
Present-day lasers	10 ¹⁸ -10 ¹⁹	5×10 ⁵ -5×10 ⁶	~1 ns	5×10⁻⁴ (1 shot/30')	98(11)111111 98(11)111111 94(11)111111 92(11)111111 92(11)111111
PetaWatt lasers ("APOLLON")	10 ²² -5×10 ²⁴	10 ¹¹ -5×10 ¹³	~1 ns	1.6×10 ⁻² (1 shot/min)	
Laser-driven high-density, ultra-short proton beam Spallation process	high-flux neutrons	Laser- nerated plasma		A S Processor A S Pr	Process (100 100 100 100 100 100 100 100 100 10

Ressemblant 4- Collisionless shocks & particles acceleration

Identical 1-EOS

Huser, Henry, Denoeud, Bolis, Guarguagini, etc..PhD

Over nearly 2000 known planets, most have internal pressure between IMbar to 10

Planetary models need EOS at high P-T conditions: Pb in the **EOS** leave lacunae in the understanding of planetary physics

Laser compression and EOS

Rankine-Hugoniot link material properties and shock quantities

3 equations et 5 parameters \Rightarrow <u>We need to measure 2 quantities</u>

• 2 parameters in the sample \implies absolute EOS measurement

 $U_{S \text{ (sample)}}, U_{p \text{ (sample)}}$

ρ,

X-ray radiography, XRD

VISAR & EOS

H2O-CHNO mixtures : metallic behaviour at high P

VISAR: reflectivity&absorption (e⁻ conductivity)

Input for planetary dynamo models

CHNO conductivity is higher than H2O at 1Mbar: implication for Uranus and Neptune dynamos

In situ microscopic measurements

X-Ray Diffraction: ionic structure IRON: BCC-HCP transition Cold Fe BCC phase HCP phase 50 60 70 Diffraction e

Phase transitions at high P/T conditions and dynamics

Shock compression leads to too high temperatures: laser pulse shaping to get quasi isentropic compression

Shock compression leads to too high temperatures: laser pulse shaping to get quasi isentropic compression

Shock compression leads to too high temperatures: laser pulse shaping to get quasi isentropic compression

Shock compression leads to too high temperatures: laser pulse shaping to get quasi isentropic compression

Quasi isentropic compression

LIL experiment: 7Mbar, 8500K

Quasi isentropic compression

LIL experiment: 7Mbar, 8500K

LMJ expriment (accepted for 2019): quasi isentropic compression+XRD access to both macroscopic and microscopic of high pressures conditions relevant for Super Earth interiors

SIMILARITY: POLAR

In POLAR: cataclysmic variable with B>10MG

Strong B field prevents the accretion disk formation: accretion column

Impact of supersonic flow with the white dwarf photosphere: reverse radiative shock

SIMILARITY: POLAR

Exact scaling laws exist for different accretion column regimes

Falize et al. ApSS 2009 Falize et al. ApJ 201

The stationary position of the reverse shock h_s:

$$h_{s} \approx \mathbf{v}_{s} \times t_{cool} - \begin{bmatrix} \mathbf{v}_{s} \sim 1000 \text{ km/s} \rightarrow h_{s} \sim 1000 \text{ km} \text{ challenging to resolve} \\ t_{cool} \sim 1 \text{ s} \end{bmatrix} \xrightarrow{\mathbf{v}_{s}} h_{s} \sim 100 \text{ km/s} \rightarrow h_{s} \sim 100 \text{ } \mu\text{m}} \quad \begin{array}{c} \text{easily observable in} \\ \text{laboratory} \end{bmatrix}$$

GOAL of the POLAR project: reproduce and study scaled models of accretion process in laboratory.

First experiment

GO

Wollastone prism

Transverse self emission

Obstacle

Obstacle

First evidence of reverse shock (optical) [E. Falize et al. HEDP, 8 (2012)]

White

Dwarf

Obstacle

Not fully similar: radiation

Fluid parameter	VCms shock	Laboratory plasma
h_s (cm)	10 ⁷	5×10^{-2}
t (s)	1	5.5×10^{-8}
$v_a ({\rm km}~{\rm s}^{-1})$	1000	80
$\rho_a (\mathrm{g}\mathrm{cm}^{-3})$	10 ⁻⁸	10 ⁻²
$T_{\rm ps}~({\rm eV})$	10 ⁴	15
M	>10	3
χps	≪1	1
Bo _{ps}	≫1	15
R _{ps}	≫1	2×10^4

Obstacle

B field collimation

Direct density measurement of the return shock density: B collimation, no tube

Towards full similarity : LMJ

C• 1

Emeric.Falize@CEA.fr

Radiative zone 0.01 g.cm⁻³ - 120 eV

Required regime according to the scaling laws

stacle				— c — t	lensit empe	y erature
ğo	<u> </u>	m				
	A		4	Accre	tion	shock
	/					
	radiativ	e post-sl	hock r	egion		
	radiativ	e post-sl	nock r	egion accretior shock	······	density tempera
white dwarf surface	radiativ	e post-sl	hock r	accretion shock	••••••••••••••••••••••••••••••••••••••	density

Fluid parameter	Astrophysics	MJ experiment	10
Velocity (km.s ⁻¹)	1000	300	110
Density (g.cm ⁻³)	10 ⁻⁸	0.01-0.05	40
Temperature (eV)	104	100-130	10,
Mach number	> 10	10	ct-
X parameter	10-3-10-1	10-2	4

Wide impact on the community

Conclusion

 Laboratory astrophysics is a very active field in France (more and more labs involved)

- * Started over two decades ago, it evolves very rapidly :
 - * New tools (e.x. strong pulsed magnetic fields)
 - * New facilities (XFELs, PETAL-LMJ, Apollon)
 - New exciting experiments

Conclusion

aboratory formation of a scal

 Laboratory astrophysics is a very active field in France (more and more labs involved)
Aure

- * Started over two decades ago, it evolves very rapidly :
 - * New tools (e.x. strong pulsed magnetic fields)
 - * New facilities (XFELs, PETAL-LMJ, Apollon)
 - New exciting experiments