Alpes

Stellar multiplicity in young star

 forming regionsE. Moraux, I. Joncour, G. Duchêne, S. Lacour

Cluster formation products

What are the stellar statistical properties at birth ?

Open issues on multiplicity

- How do multiples form ? Core fragmentation with $\mathrm{N}=1-3$?
- Correlation primary mass - max separation - median separation \rightarrow Preferred spatial scale for fragmentation depending on core mass ?
- IMF in young clusters correspond to the system IMF (<1000 AU systems not resolved) \rightarrow If the system IMF appears universal, is the multiplicity frequency also universal ?
- What is the CMF/IMF connection ?
- Flat mass ratio distribution for $m>0.3 \mathrm{Msun}$ but steeper at lower masses \rightarrow Lower limit of companion masses? What about planetary-mass objects at large separation?

Fragmentation process

Taurus

Spatial distribution and multiplicity

 in Taurus- Complete catalog of Taurus members observed in HRA
- If companion <1000 au \rightarrow multiple (M); If not \rightarrow single (S)

Multiple systems appear more concentrated along the filaments

Spatial distribution and multiplicity in Taurus

- 1st nearest-neighbour separation (1-NNS) distribution

Joncour et al. 2017

Probability $3 x$ higher to have a companion within 10 kau

Ultra wide pairs (UWPs)

- UWPs defined as mutual nearest neighbour couples
- Separation range 1-60 kau
- Probable coeval physical pairs:
- Pairs (<5kau) known to be physically linked (Kraus et al. 2009)
- Separation distribution compatible with Opik law, extended to 60kAU
- Class pairing not random

UWP properties

- Multiple-Multiple (M-M) pairs have shorter separation
- Degree of multiplicity increases as the separation decreases

UWP properties

- Degree of multiplicity increases with primary mass

Joncour et al. 2017

Origin of UWP

- Current density in Taurus too low to disrupt them by dynamical interactions \rightarrow pristine imprint of star formation ?
- May be the descendants of multiple prestellar/Class 0 objects observed at radio/millimeter wavelengths (e.g. Tobin et al. 2010, 2016) and the precursors of wide systems (10-100 kAU) identified in older moving groups (Floriano-Alonso et al. 2015; Elliott et al. 2016)
- MM pairs (<10kau) may form from a single core fragmentation
- SS pairs (>30kau) would be formed by another mechanism
- Denser, more massive cores would produce higher multiplicity systems \rightarrow cascade fragmentation ?

Elementary structures in Taurus

- ~ half of the UWPs are within larger stellar overdensities, called NESTs (Nested Elementary STructures)
- 20 NESTs identified in Taurus
 using dbscan algorithm with 99.85% significance level above random
- Located along the filaments
- ~45\% of stars are in NESTs
- Each NEST contain 4-23 stars
- Mean stellar density ~340 pc-2

Star formation in Taurus

- ~75\% of class 0/I in only 11 NESTs \rightarrow preferred sites of star formation but some of them are getting infertile

- Bimodal size-star number relation $\rightarrow 2$ fragmentation scenarii

Universality of stellar multiplicity

ONC

Visual companion frequency: a dichotomy?
 $$
C S F=\frac{B+2 T+3 Q}{S+B+T+Q}
$$

Duchêne \& Kraus 2013

Effect of dynamical evolution

- Most stars were born in multiple systems (Reipurth et al. 2016)
- Rapid decay of wide systems in cluster environments (e.g. Kroupa 1995, Marks \& Kroupa 2012): $\mathrm{t}_{\text {cross }}=\mathrm{R} / \sigma_{\mathrm{V}} \sim 1 \mathrm{Myr}$

Chen et al. 2013

Kroupa et al. 2001

Apparent visual companion dichotomy compatible with universality
\rightarrow Need to look at the whole separation distribution

Separation distribution

Separation distribution

Tight binaries (< 50 au) in the ONC

- At 400 pc , separations of 0.025-0.1"
- Even with adaptive optics on large telescopes, this is a very challenging task! \rightarrow aperture masking tecnique

Place this in pupil plane

- VLT/NaCo SAM observations
- 42 ONC members: $7.5<K<9.5 ; 0.3$ - 2.5 Msun

Survey results

- 13 companions in 0.02-0.2" range
- No trend with location, nor stellar mass

High multiplicity in the ONC! (10-50 au)

Universality?

- The ONC is as binary-rich as Taurus (< 50 au)
- Multiplicity may indeed well be universal at birth and subsequently dynamically evolved
- But then, where do field stars come from?
- Not from associations
- Nor ONC-like clusters
- Even denser clusters?
- Unlikely (cluster counts)
- Do close binaries evolve?

Summary and perspectives

- Cascade fragmentation of the most massive cores may be at the origin of the wide (<20kau) multiple systems (UWP and NESTs) with $\mathrm{N}^{\sim} 5$ in Taurus
- Wider systems (>30kau) form from a few cores instead
\rightarrow Gaia will help to confirm the status of UWP and NESTs and study their kinematics
- Multiplicity frequency may be universal but wide systems rapidly (<1Myr) processed
- But where does the field come from ?
\rightarrow Look at even shorter separation (ELT)
\rightarrow Probe low q (<0.1) multiple systems (JWST/ELT)

