

Laboratory astrophysics studies with magnetized laser-produced plasmas

Andrea Ciardi

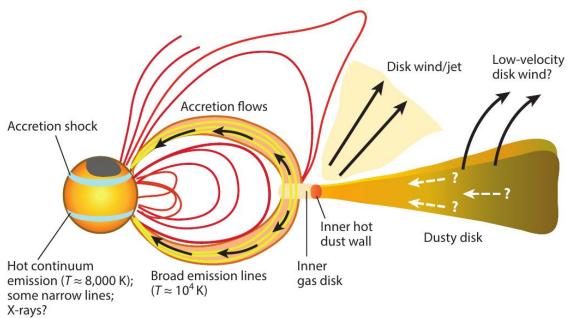
Sorbonne Université & Observatoire de Paris, UMR 8112 CNRS

This work was partly funded by the French Government through the ANR grant SILAMPA the Laboratory of Excellence PLAS@PAR, and a DIM-ACAV doctoral grant

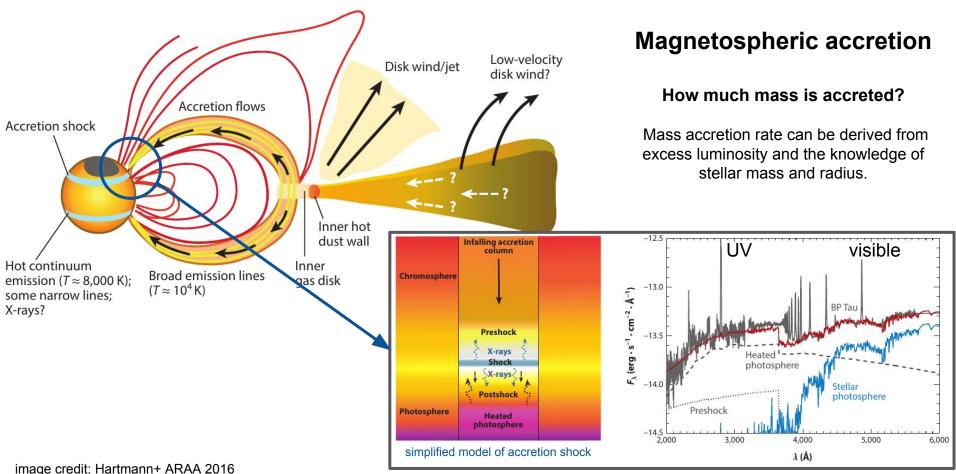
PNPS colloque de prospective, March 2018

Acknowledgements

Benjamin Khiar (LERMA) Guilhem Revet (LULI)


- J. Fuchs, T. Vinci, S.N. Chen (LULI, France)
 D. P. Higginson (LLNL)
 S. Pikuz, E. Filippov, S.N. Ryazantsev, I.Yu. Skobelev (NRNU 'MEPhl' & JIHT, Russia)
 J. Béard, O. Portugall (LNCMI, France)
 M. Blecher (ILP, Germany)
 M. Borghesi, K. Naughton (Queen's University Belfast, United Kingdom)
- K. Burdonov, A. Soloviev (Institute of Applied Physics, Russia)
- D. Khaghani (GSI Helmholtzzentrum für Schwerionenforschung, Germany)

R. Bonito, C. Argiroffi, S. Orlando (Universita di Palermo & Osservatorio Astronomico di Palermo INAF) R. Rodriguez (Universidad de Las Palmas de Gran Canaria, Spain)


C. Stehle, L. Ibgui (LERMA) L. Van Box Som, E. Falize (CEA)

ASTROPHYSICAL CONTEXT

Mass accretion onto Classical T Tauri Stars

Mass accretion onto Classical T Tauri Stars

Mass accretion onto Classical T Tauri Stars

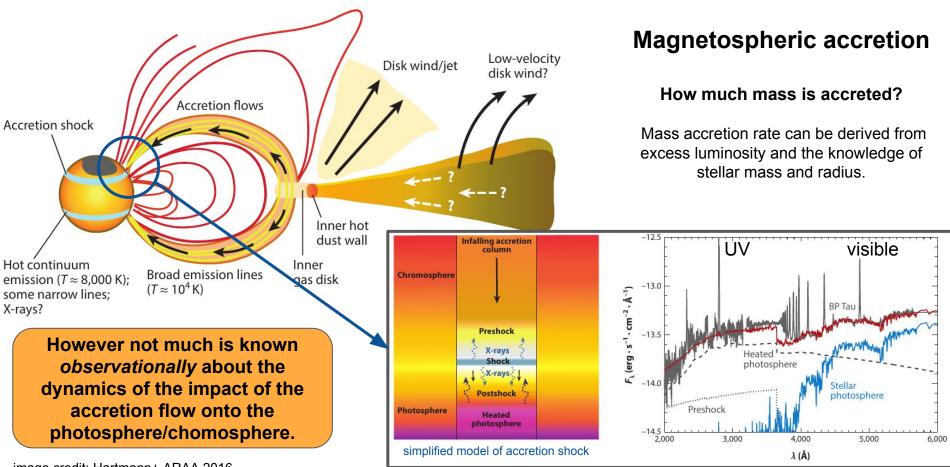
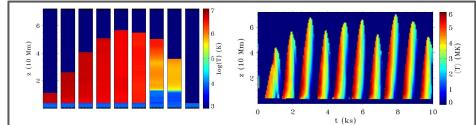
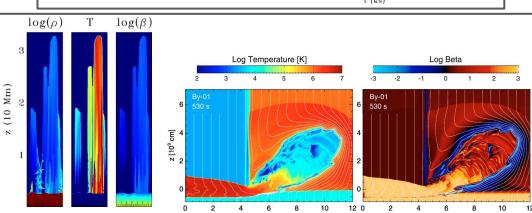
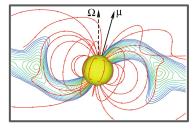



image credit: Hartmann+ ARAA 2016

Impact dynamics: cooling instabilities, fibrils and 3D


1D simulations

Cooling instabilities induces oscillation of shock front \rightarrow not observed


Inside the column: independent fibrils *At the edge*: splash out of plasma

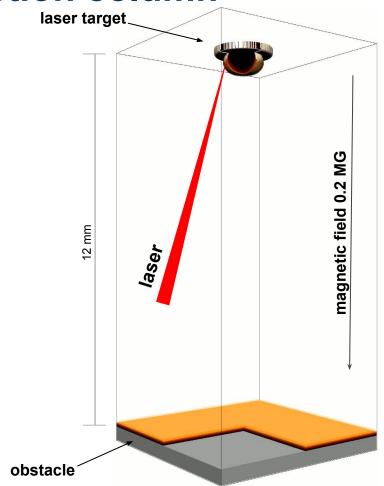
3D simulations

Global structure. No resolution of shock.

Images: Matsakos+ 2013; Orlando+ 2010 ; Romanova+ 2004

LABORATORY MODEL OF MAGNETIZED ACCRETION COLUMNS

Results presented from:


Revet et al, 2017 Science Advances Khiar et al, to be submitted to MNRAS

Laboratory model of an accretion column

Experiments

ELFIE 100 TW laser (LULI, Ecole Polytechnique)

- energy 40 J ($I_{max} \sim 1.6 \times 10^{13} \text{ W cm}^{-2}$) pulse duration 0.6 ns
- laser wavelength 1.057 μ m
- focal spot diameter ~ 700 μ m

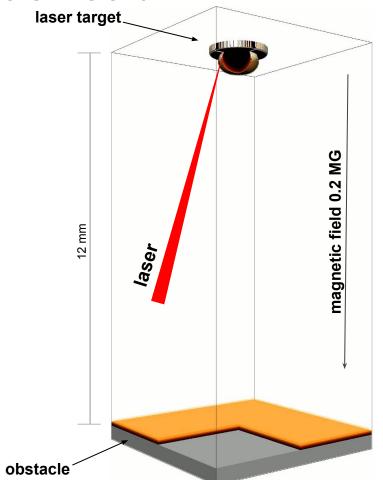
Laboratory model of an accretion column

Experiments

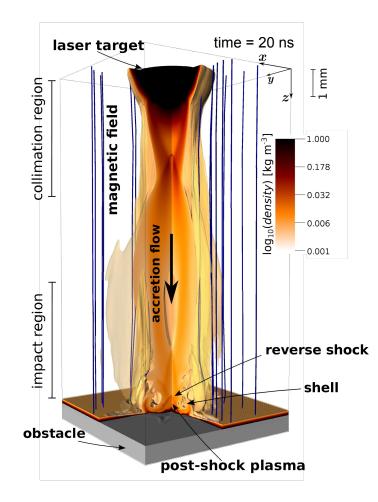
ELFIE 100 TW laser (LULI, Ecole Polytechnique)

- energy 40 J ($I_{max} \sim 1.6 \times 10^{13} \text{ W cm}^{-2}$)
- pulse duration 0.6 ns
- laser wavelength 1.057 μ m
- focal spot diameter ~ 700 μ m

Laboratory modelling

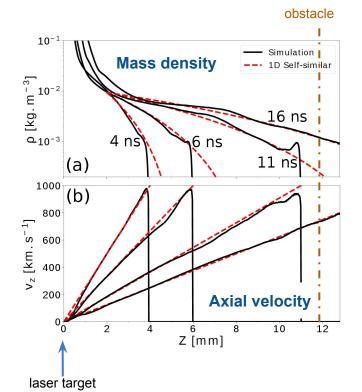

GORGON: single fluid, 2-T, 3D resistive MHD [Chittenden+ PoP 2004; Ciardi+ PoP 2007; Khiar+ PoP in preparation]

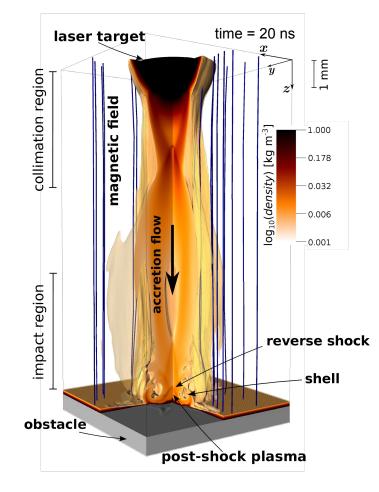
- laser transport
- anisotropic thermal conduction
- optically thin radiative losses
- computational "vacuum"


Astrophysical modelling PLUTO: single fluid, 1-T, 2D MHD

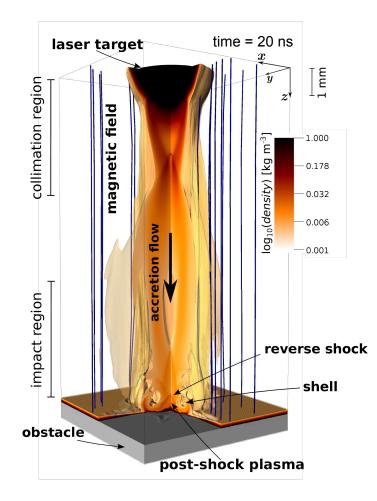
[Mignone+ 2007]

- anisotropic thermal conduction
- optically thin radiative losses

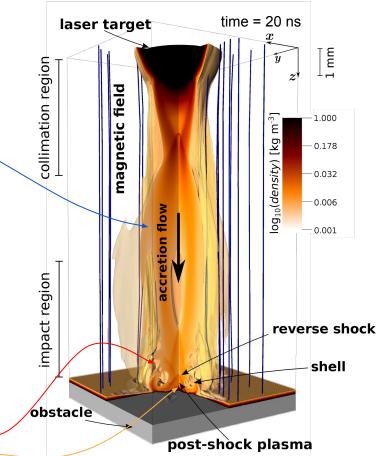



Laboratory "accretion flow"

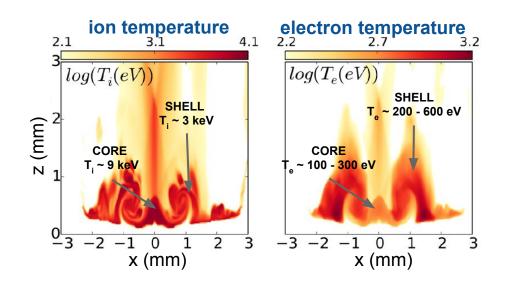
Laboratory "accretion flow"

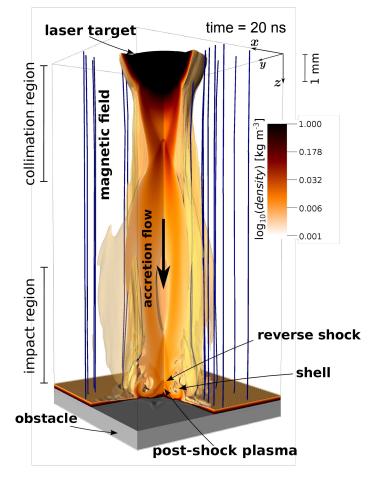

Laser-ablated plasma → "accretion flow" is well characterized [Ciardi+ PRL 2013, Albertazzi+ Science 2014 Higginson+ HEDP 2016, PRL 2017]

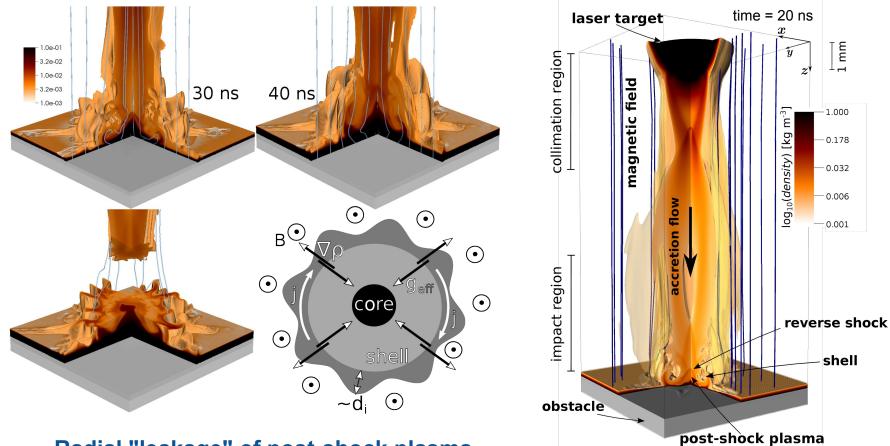
Impact onto the surface


- Formation of a reverse shock in the incoming stream
- Post-shock plasma pushes out the magnetic field and it is then re-collimated along the sides of the accretion flow forming a "cocoon" → strong perturbation of the accretion shock

Typical plasma conditions


- Formation of a reverse shock in the incoming stream
- Post-shock plasma pushes out the magnetic field and it is then re-collimated along the sides of the accretion flow forming a "cocoon" → strong perturbation of the accretion shock

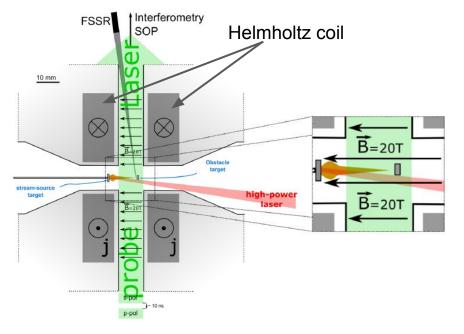

				Č	5 -	ma		
Electron magnetization	4.3	51	$9.5 imes 10^2$				N/	
Ion magnetization	6×10^{-3}	2.8	3.9			Mo F		
Mach number	31.6	< 1	< 1			2		
Alfven Mach number	4.1	< 1	< 1		-	accretio		
Reynolds	$9.8 imes 10^5$	31	22	c		cre		
Magnetic Reynolds	72	$1.4 imes10^3$	$5.3 imes 10^3$	aio	2	ac		
Peclet	21	0.2	0.2	ط	- -			
β_{ther}	$2 imes 10^{-2}$	30	2.6		5		A ANA	
β_{dyn}	34	11	1.3	impact region			alt	H
Euler number	40.8						-	
Alfven number	$1 imes 10^{-2}$						N CO	
				ob	stacle			
						× [
						p	ost-sh	ock


Shocks, cores, shells and cocoons...

- Electron-ion equilibration time-scale ~ 30 ns - Decoupled T_a and T_i ~ $m_i v^2 / k_B \sim 5 - 10 \text{ keV}$
- Two components:
 - \rightarrow cold, dense core and hot, tenuous shell

Rayleigh-Taylor interchange instability

 \rightarrow Radial "leakage" of post-shock plasma


Experimental platform ELFIE 100 TW @ LULI

Laser

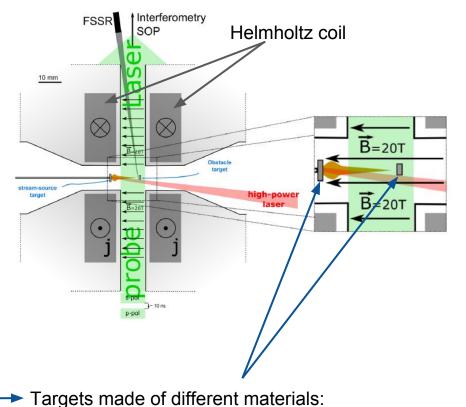
ELFIE 100 TW laser (LULI, Ecole Polytechnique) (40 J, 0.6 ns, 1057 nm, $\phi \sim 700 \ \mu$ m, $I_{max} \sim 1.6 \ x \ 10^{13} \ W \ cm^{-2}$)

Magnetic field

Pulsed-power (20 kA, 16 kV) + Helmholtz coil (design and manufacture LNCMI Toulouse) *B* up to 40 T over > 1 microsecond (Albertazzi+ RSI 2013)

Experimental platform ELFIE 100 TW @ LULI

Laser

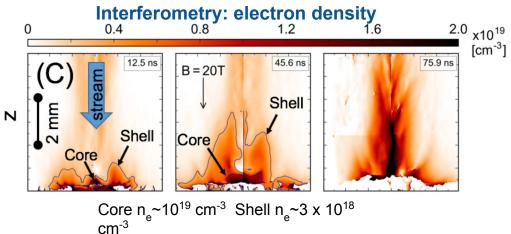

ELFIE 100 TW laser (LULI, Ecole Polytechnique) (40 J, 0.6 ns, 1057 nm, $\phi \sim 700 \ \mu$ m, $I_{max} \sim 1.6 \ x \ 10^{13} \ W \ cm^{-2}$)

Magnetic field

Pulsed-power (20 kA, 16 kV) + Helmholtz coil (design and manufacture LNCMI Toulouse) *B* up to 40 T over > 1 microsecond (Albertazzi+ RSI 2013)

Diagnostics

- Electron density (Mach-Zehnder interferometer, 100 mJ in 350 fs @ 528.5 nm)
- Time and space resolved visible self-emission measurements (Streaked Optical Pyrometer)
- Temporally-integrated, spatially resolved X- ray emission (H- and He-like fluorine ions), FSSR.

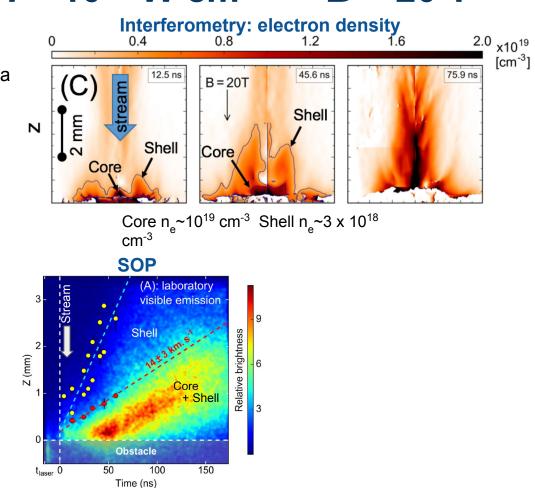

PolyVinyl Chloride (PVC, (C₂H₃Cl)₂)

Teflon (CF_2) ,

Experimental results: $I \sim 10^{13} \text{ W cm}^2$ B = 20 T

Laser interferometry

- upon impact, generation of a shell of plasma surrounding a denser core
- at later times (> 50 ns) "cocoon" of post-shock plasma interacts and disrupts incoming flow.


Experimental results: $I \sim 10^{13} \text{ W cm}^2$ B = 20 T

Laser interferometry

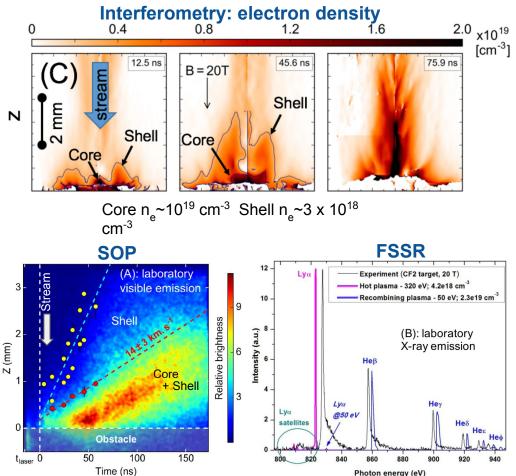
- upon impact, generation of a shell of plasma surrounding a denser core
- at later times (> 50 ns) "cocoon" of post-shock plasma interacts and disrupts incoming flow.

SOP show three distinct regions:

- incoming flow (the stream)
- core (+ shell)
- shell

Experimental results: *I* ~ 10¹³ W cm² *B* = 20 T

Laser interferometry

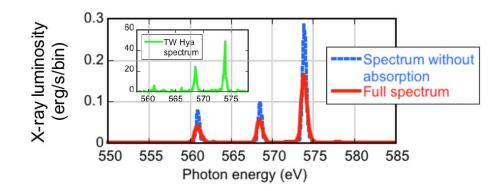

- upon impact, generation of a shell of plasma surrounding a denser core
- at later times (> 50 ns) "cocoon" of post-shock plasma interacts and disrupts incoming flow.

SOP show three distinct regions:

- incoming flow (the stream)
- core (+ shell)
- shell

FSSR data best fitted with two-component plasma

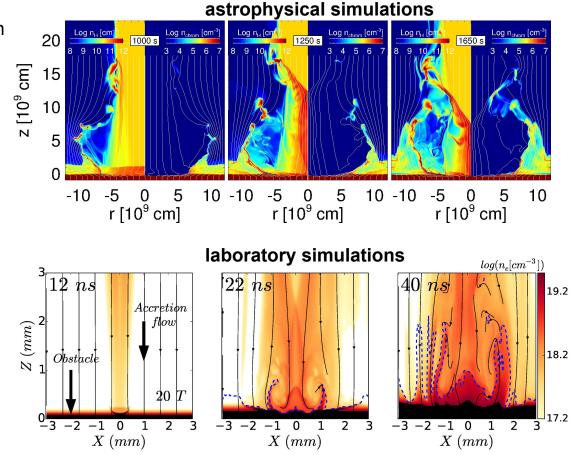
- shell: ~ 250 400 eV with n ~ 4.2 x 10^{18} cm⁻³ core: ~ 50 100 eV with n ~ 2.3 x 10^{19} cm⁻³



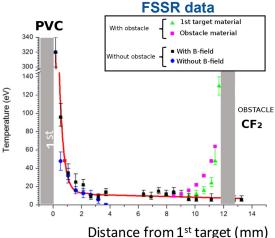
Simulations of Classical TTauri accretion flows

Structures similar to those seen in laboratory flows

- Core and magnetically confined shell of plasma \rightarrow absorption of by shell of shock emission
- No temperature decoupling:
 - hot core
 - colder shell
 - **Caveat**: gravity becomes non-negligible over time-scales > 1000 s



Simulated parameters of the accretion flow


- density ~ 10^{11} cm⁻³
- velocity ~ 500 km/s
- magnetic field ~ 7 50 G
- Temperature ~ 2000 K
- Post-shock plasma-beta ~ 1-100

Chromospheric ablation and ejection

- Chromosphere is ejected alongside with the post-shock accretion plasma → heating
 - Experiments/simulations also show obstacle material being ablated and mixed

laboratory experiments

Summary and conclusions

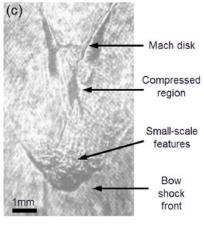
Experimental confirmation of 2D astrophysical simulation results

- \rightarrow formation of a multicomponent structure: core, shell and cocoon
- \rightarrow feedback perturbs the accretion flow and shock
- \rightarrow no gravity (astro sims. done with and without). Limited to early impact dynamics (unsteady accretion flow)

Rayleigh-Taylor-type interchange instability can develop in the accretion and post-shock flow

- \rightarrow 2D modelling is not sufficient
- \rightarrow wider spreading of post-shock plasma, interaction with corona (enhanced local heating?)

Mixing of chromospheric plasma with post-shock accreted flow


 \rightarrow accurate treatment of chromosphere (obstacle) boundary conditions is necessary to correctly capture the post-shock flow dynamics

Summary and conclusions

Where can the experiments help?

- \rightarrow time-variable accretion (multiple laser beams)
- \rightarrow simulations are limited to plasma-beta not too far from 1 (and so far 2D)
- \rightarrow higher-B \rightarrow fibrils?
- \rightarrow change material \rightarrow cooling instabilities?

Suzuki-Vidal+ApJ2015