La mission spatiale PLATO ou l'apport de la physique stellaire à l'étude des planètes

M.-J. Goupil, LESIA M. Deleuil, LAM .

Missjons spatiales exoplanètes

CHEOPS

GAIA

Détection: état de l'art

3706 planètes détectées

Détection: état de l'art

720 planètes

Détection: état de l'art

720 planètes

Batalha et al., 2010 Pepe et al., 2013
Howard et al, 2013
Marcy et al. 2014

Dumusque et al., 2014 Dressing et al., 2015;
Motalebi et al., 2015

Détection: état de l'art

3706 planètes détectées

Super Terre à longue période orbitale

Kepler-452b :
$R p \sim 1.6 R \oplus$
Mass ???

\section*{Difficulté 1: la magnitude} | 1 |
| :--- |
| 0 |
| $\stackrel{0}{5}$ |

η-Earth - occurrence

η Earth: fraction d'étoiles avec une planète similaure à la Terre dans leur zone habitable.

From Kepler and radial velocity surveys:

reference	planet frequency	host stellar type
Catanzarite \& Shao (2011) ApJ, 738, 151	$1 \%-3 \%$	Sun-like stars
Traub (2012) ApJ, 745, 20	$20 \%-58 \%(34 \%)$	FGK stars
Gaidos (2013) ApJ, 770, 90	$31 \%-64 \%(46 \%)$	dwarf stars
Bonfils et al. (2013) A\&A, 549, A109	$28 \%-95 \%(41 \%)$	M stars
Dressing \& Charbonneau (2013) ApJ, 767, 95	$9 \%-28 \%(15 \%)$	M stars
Kopparapu (2013) ApJ, 767, 8	$24 \%-60 \%(48 \%)$	M stars

Difficulté 2: l'étoile

Charactériser les exoplanètes ...
excellente connaissance de l'étoile requise!

Difficulté 2: l'étoile

Charactériser les exoplanètes ...

- Masse + rayon \rightarrow densité moyenne
excellente connaissance de l'étoile requise!
\rightarrow masse et rayon de l'étoile gaseuse vs rocheuse, structure interne

Difficulté 2: l'étoile

Charactériser les exoplanètes ...

- Masse + rayon \rightarrow densité moyenne gaseuse vs rocheuse, structure
- Composition \rightarrow formation

excellente connaissance de l'étoile requise!
\rightarrow masse et rayon de l'étoile
\rightarrow composition de l'étoile

Difficulté 2: l'étoile

Charactériser les exoplanètes ...

- Masse + rayon \rightarrow densité moyenne gaseuse vs rocheuse, structure
- Composition \rightarrow formation
- Propriété de l'atmosphère habitabilité

excellente connaissance de l'étoile requise!
\rightarrow masse et rayon de l'étoile
\rightarrow composition de l'étoile
\rightarrow propriétés de l'étoile, insolation

Difficulté 2: l'étoile

Charactériser les exoplanètes ...

- Masse + rayon \rightarrow densité moyenne gaseuse vs rocheuse, structure
- Composition \rightarrow formation
- Propriété de l'atmosphère habitabilité
- Age \rightarrow évolution
excellente connaissance de l'étoile requise!
\rightarrow masse et rayon de l'étoile
\rightarrow composition de l'étoile
\rightarrow propriétés de l'étoile, insolation
\rightarrow age de l'étoile

Measure accurate planet parameters, including all orbital parameters

Goal: acccuracy for Earthlike planets around solarlike stars:

- radius ~3\%
- mass ~10\%
- age known to 10\%

ESA M3 mission
Launch 2026

Very wide field + large collecting area: multiinstrument approach

Goal :

optimize the number of stars and their brightness : $4 \leq \mathrm{m}_{\mathrm{v}} \leq 16$

PLATO 2.0 instrument

Detect transits of an Earth-size planet around a solar-type star up to 1 au and allow its complete characterization

, PLATO 2.0 instrument

- 24 normal cameras in groups of 6 camera each
- Offset to increase FoV
- 12 cm aperture telescopes
- Operate in "white" light
- range $\sim 8 \leq m v \leq 13$
- FOV ~ $49^{\circ} \times 49^{\circ}$
- 4 CCD each 4510×4510 px
- Pixel size $18 \mu \mathrm{~m}$ square
- Read-out cadence: 25 sec

Total FOV ~2232 deg 2

${ }_{\text {, PLATO } 2.0}$ instrument

- 2 "fast" camera used for pointing
- Each with one broadbad filter "red" and "blue" telescope otherwise identical to normal camera
- Read-out cadence: 2.5 sec

Purpose:

- Fine guiding
- Photometry of the brighest stars (< 8 mag)
- 24 normal cameras in groups of 6 camera each
- Offset to increase FoV
- 12 cm aperture telescopes
- Operate in "white" light
- range $\sim 8 \leq m_{v} \leq 13$
- FOV ~ $49^{\circ} \times 49^{\circ}$
- 4 CCD each 4510×4510 px
- Pixel size $18 \mu \mathrm{~m}$ square
- Read-out cadence: 25 sec

$$
\text { Total FOV ~2232 } \text { deg² }^{2}
$$

Objectifs stellaires

Stellar science (core program):

- precise and accurate characterization of planet host stars (in particular ages)
- As best as possible characterization of all target stars (in particular ages)
- Identify and characterize a large sample of benchmark stars
- Improve our knowledge of the internal structure and evolution of low-mass stars
- Inclination of stellar rotation axis

Measurement of spin-orbit angle (constraints on scenarios of planet migration)

Complementary science:

- Seismology of A to early F, gamma Dor, of massive B,O stars, of evolved stars
- All types of micro-variability and/or variability of times scales up to 1-2 years
- Galactic population studies and much more...

Methodology for the stellar science of the core program

\checkmark Oscillating stars
Seismology (model independent relationships and/or based on stellar models and.or inversion)
\checkmark Non oscillating stars or non detected oscillations
Classical methods • Physical relationships (Black body,..)

- HR and isochrone fitting
- empirical prescriptions (gyrochronology)

In any case, GAIA, \& ground surveys are crucial

Stellar Data Products

INPUT

1) PLATO light curves interferometry
2) Catalogs and follow-up

* V1 : before launch
* V2-V3 during operation and after

Intermediate data products

OUTPUT

DP3 : oscillation mode parameters + seismic mean internal rotation + inclination angle
DP4 : stellar activity and surface rotation measurements
DP5 : mass, radius and age of the (core program) F5-K7 stars + M dwarfs

Stellar Data Products

INPUT

1) PLATO light curves interferometry
2) Catalogs and follow-up

* V1 : before launch
* V2-V3 during operation and after

Intermediate data products

- Classical parameters : Teff, $\log g, \log L(V, M v(d), B C, A V)$, surface chemical abundances
- Scaling laws
- Stellar models and frequency calculations \rightarrow grids of stellar models + on the fly for specific cases
- Surface boundary conditions for stellar models and oscillation frequencies
- Model atmospheres + convective flux/entropy tables + surface effects
- Stellar activity model \rightarrow scaling laws for 1D stellar models
- Spot modelling, gyrochronology
- Simulated light curves - Tests cases/benchmarks
(Plato noise (V, B-V,Ntel) + spots+low freq. Activity + granulation + oscillation)
- Limb darkening
- Inclination of stellar rotation axis

OUTPUT

DP3 : oscillation mode parameters + seismic mean internal rotation + inclination angle
DP4 : stellar activity and surface rotation measurements
DP5 : mass, radius and age of the (core program) F5-K7 stars + M dwarfs

PLATO-target stars : simulation of the north reference field

The Input Catalog is being built using existing star catalogues.

A field of reference (TBC) was defined
For that field, the star count yields :

- about 13000 dwarfs and subgiants, spectral type F5-K7, 8 $\leq m a g \leq 11$, noise $\leq 34 \mathrm{ppm} . \sqrt{ } \mathrm{h}$, time sampling 25 s
- about 29000 dwarfs and subgiants with $\mathrm{V} \leq 11$, $34 \mathrm{ppm} / \mathrm{h}<$ NSR $\leq 80 \mathrm{ppm} / \mathrm{h}$
- about 80000 stars dwarfs and subgiants with $\mathrm{V}<13$, NS $\mathrm{R}<80$ $\mathrm{ppm} / \mathrm{h}$.

Etoiles de P1
Intervalles de masse et métallicité

PLATO - main requirements for the stellar core program

\checkmark Requirements for DP5 and P1: for a G0V star with $V \leq 10$ (Reference star : $\left.1 M_{\odot}, 1 R_{\odot}, 6000 \mathrm{~K}\right)$

- $\Delta R_{\text {star }} / R_{\text {star }} \leq 3 \%$
- $\Delta \mathrm{M}_{\text {star }} / \mathrm{M}_{\text {star }} \leq 10 \%$
- Δ Age/Age $\leq 10 \%$

\checkmark Requirements for DP3 and P1: $\sim 0.1-0.2 \mu \mathrm{~Hz}$ uncertainties around $\mathrm{v}_{\text {max }}$

PLATO-noise

\checkmark The noise level for a target depends on the apparent magnitude and on the number of cameras

- Target photon noise
- Random noise from the instrument
- Residual noise after correction from systematics

Simulation from the Besançon galactic model

PLATO will be able to detect solar-like stars from the main-sequence to the red giant branch

Where are we and what efforts in the forcoming years?

\checkmark Most of the tools required for (seismic and non -seismic) modeling are already available \rightarrow Need to test/select them to organize the pipelines

- Identify benchmark stars, case studies, simulation Identify case studies, simulations
- Identify characterize benchmark stars (eclipsing binaries, cluster stars, Kepler legacy stars...)

Where are we and what efforts in the forcoming years?

\checkmark Most of the tools required for (seismic and non -seismic) modeling are already available
\rightarrow Need to test/select them to organize the pipelines

- Identify benchmark stars, case studies, simulation Identify case studies, simulations
- Identify characterize benchmark stars (eclipsing binaries, cluster stars, Kepler legacy stars...)
\checkmark PLATO requirements: radii ($\sim 2 \%$), masses ($\sim 10 \%$), ages ($\sim 10 \%$) for a 'Sun’
- Feasibility convincingly shown for PLATO reference star (Sun at $\mathrm{V}=9$) and for Kepler stars (blind tests, Kepler legacy stars)

Where are we and what efforts in the forcoming years?

Expected seismic performances

Based on Trilegal galactic simulation
Oscillation detection level based on scaling relations (B. Mosser)

Rescaled to fit the Sun seismic precision

Blind test performed by several groups in WP\#12

GOV star with $V \leq 10$
(Reference star : $1 M_{\odot}, 1 R_{\odot}, 6000 \mathrm{~K}$)
Almost compliant with the requirements on the age

Where are we and what efforts in the forcoming years?

\checkmark Most of the tools required for (seismic and non -seismic) modeling are already available
\rightarrow Need to test/select them to organize the pipelines

- Identify benchmark stars, case studies, simulation Identify case studies, simulations
- Identify characterize benchmark stars (eclipsing binaries, cluster stars, Kepler legacy stars...)
\checkmark PLATO requirements: radii ($\sim 2 \%$), masses ($\sim 10 \%$), ages ($\sim 10 \%$) for a 'Sun’
- Feasibility convincingly shown for PLATO reference star (Sun at $\mathrm{V}=9$) and for Kepler stars (blind tests, Kepler legacy stars)
\checkmark Age precision/accuracy harder to reach for higher-mass stars (1.2 M_{\circ} à $\sim 1.4 \mathrm{M}_{\circ}<=$ core program)

Where are we and what efforts in the forcoming years?

\checkmark Most of the tools required for (seismic and non -seismic) modeling are already available
\rightarrow Need to test/select them to organize the pipelines

- Identify benchmark stars, case studies, simulation Identify case studies, simulations
- Identify characterize benchmark stars (eclipsing binaries, cluster stars, Kepler legacy stars...)
\checkmark PLATO requirements: radii ($\sim 2 \%$), masses ($\sim 10 \%$), ages ($\sim 10 \%$) for a 'Sun’
- Feasibility convincingly shown for PLATO reference star (Sun at $\mathrm{V}=9$) and for Kepler stars (blind tests, Kepler legacy stars)
\checkmark Age precision/accuracy harder to reach for higher-mass stars (1.2 M_{\circ} à $\sim 1.4 \mathrm{M}_{\circ}<=$ core program)
\checkmark Development of complementary seismic diagnostics that will increase the precision on the stellar (and therefore planetary) parameters
\checkmark Main contribution to age incertainties mainly due stellar models: improving/implementing/ testing the physics: atomic diffusion et autres transports, enveloppe and core overshoot, surface effects

Where are we and what efforts in the forcoming years?

$\sqrt{ }$ One must expect a variety of cases to deal with :

- a large diversity of planet-host stars and the stars without planets
- F5 to K7 stars in clusters, eclipsing binaries, etc...
- solar-like oscillating red giants,
- the particular case of bright stars

\checkmark Lessons from CoRoT/Kepler

From: bright spectroscopic eclipsing binaries with solar-like oscillations (graal!): 16 Cyg A and B mag, ...

To Kepler-11 (mag 13.9) host star of 6 planets , Trappist (M dwarf), retired A host star

Support from ground-based observations are crucial

Implication française pour la partie stellaire de PLATO
\checkmark WP12 (PSM) : 23 pays, > 202 participants (mars 2017, en augmentation)
47 français 'enrollés' ou 'bénévoles' :
Paris (OP,CEA,IAS), OCA, IRAP Toulouse, Besançon, LUPM Montpellier, IPAG Grenoble, Lyon

\checkmark Interfaces avec 'exoplanétistes'
\checkmark WP37 Implémentation (PDC)
\checkmark L0 \rightarrow L1 R.Samadi :traitement bord et sol

Implication française pour la partie stellaire de PLATO

Premier instrument à détecter et caractériser des planètes comme la Terre autour d'étoiles solaires proches

Implication française pour la partie stellaire de PLATO

Premier instrument à détecter et caractériser des planètes comme la Terre autour d'étoiles solaires proches

Le succès de PLATO reposera beaucoup sur TOUS les développements en physique stellaire des années à venir !

En retour, PLATO (précision photométrique, durée d'observation, nombre d'étoiles) devrait ouvrir une nouvelle ère de développement pour la physique stellaire !

