La mission spatiale PLATO ou l'apport de la physique stellaire à l'étude des planètes

M.-J. Goupil, LESIA M. Deleuil, LAM

3706 planètes détectées

3

720 planètes

720 planètes

Batalha et al., 2010 Pepe et al., 2013 Howard et al, 2013 Marcy et al. 2014

Dumusque et al., 2014 Dressing et al., 2015; Motalebi et al., 2015

3706 planètes détectées

6

Kepler-452b :

Rp ~ 1.6 R⊕

Mass ???

Difficulté 1: la magnitude

η-Earth - occurrence

η Earth: fraction d'étoiles avec une planète similaure à la Terre dans leur zone habitable.

From Kepler and radial velocity surveys:

reference	planet frequency	host stellar type
Catanzarite & Shao (2011) ApJ, 738, 151	1%- 3%	Sun-like stars
Traub (2012) ApJ, 745, 20	20%-58% (34%)	FGK stars
Gaidos (2013) ApJ, 770, 90	31%-64% (46%)	dwarf stars
Bonfils et al. (2013) A&A, 549, A109	28%-95% (41%)	M stars
Dressing & Charbonneau (2013) ApJ, 767, 95	9%-28% (15%)	M stars
Kopparapu (2013) ApJ, 767, 8	24%-60% (48%)	M stars

|--|

→ La fréquence des (super)-Terres dans la zone habitable des étoiles reste inconnue.

Charactériser les exoplanètes ...

excellente connaissance de l'étoile requise !

Charactériser les exoplanètes ...

excellente connaissance de l'étoile requise !

Masse + rayon → densité moyenne

gaseuse vs rocheuse, structure interne

→ masse et rayon de l'étoile

Charactériser les exoplanètes ...

- excellente connaissance de l'étoile requise !
- Masse + rayon → densité moyenne gaseuse vs rocheuse, structure
- Composition → formation

- → masse et rayon de l'étoile
- → composition de l'étoile

MKGFA B O

Charactériser les exoplanètes ...

- excellente connaissance de l'étoile requise !
- Masse + rayon → densité moyenne gaseuse vs rocheuse, structure
- Composition → formation
- Propriété de l'atmosphère habitabilité

- → masse et rayon de l'étoile
- → composition de l'étoile
- → propriétés de l'étoile, insolation

<complex-block>

Charactériser les exoplanètes ...

- Masse + rayon → densité moyenne gaseuse vs rocheuse, structure
- Composition → formation
- Propriété de l'atmosphère habitabilité
- Age → évolution

excellente connaissance de l'étoile requise !

- → masse et rayon de l'étoile
- → composition de l'étoile
- → propriétés de l'étoile, insolation
 - → age de l'étoile

→ évolution des systèmes planétaires

PLATO 2.0 : the method

Measure accurate planet parameters, including all orbital parameters

Goal: acccuracy for Earthlike planets around solarlike stars:

- radius ~3%
- Sunday, June 9, 13 **mass ~10%**
- age known to 10%

PLATO 2.0 instrument

ESA M3 mission Launch 2026

Very wide field + large collecting area: **multiinstrument approach**

Goal : optimize the number of stars and their brightness : $4 \le m_v \le 16$

Detect transits of an Earth-size planet around a solar-type star up to 1 au and allow its complete characterization

PLATO 2.0 instrument

- 24 normal cameras in groups of 6 camera each
- Offset to increase FoV
- 12 cm aperture telescopes
- Operate in "white" light
- range $\sim 8 \le m_V \le 13$
- FOV ~ 49° x 49°
- 4 CCD each 4510 x 4510 px
- Pixel size 18 μ m square
- Read-out cadence: 25 sec

Total FOV ~2232 deg²

PLATO 2.0 instrument

- 2 "fast" camera used for pointing
- Each with one broadbad filter "red" and "blue" telescope otherwise identical to normal camera
- Read-out cadence: 2.5 sec

Purpose:

- Fine guiding
- Photometry of the brighest stars (< 8 mag)

- 24 normal cameras in groups of 6 camera each
- Offset to increase FoV
- 12 cm aperture telescopes
- Operate in "white" light
- range $\sim 8 \le m_V \le 13$
- FOV ~ 49° x 49°
- 4 CCD each 4510 x 4510 px
- Pixel size 18 μ m square
- Read-out cadence: 25 sec

Total FOV ~2232 deg²

Objectifs stellaires

Stellar science (core program):

- precise and accurate characterization of planet host stars (in particular ages)
- As best as possible characterization of all target stars (in particular ages)
- Identify and characterize a large sample of benchmark stars
- Improve our knowledge of the internal structure and evolution of low-mass stars
- Inclination of stellar rotation axis
 Measurement of spin-orbit angle (constraints on scenarios of planet migration)

Complementary science:

- Seismology of A to early F, gamma Dor, of massive B,O stars, of evolved stars
- All types of micro-variability and/or variability of times scales up to 1-2 years
- Galactic population studies and much more...

Methodology for the stellar science of the core program

✓ Oscillating stars

Seismology (model independent relationships and/or based on stellar models and.or inversion)

✓ Non oscillating stars or non detected oscillations

- Classical methods Physical relationships (Black body,..)
 - HR and isochrone fitting
 - empirical prescriptions (gyrochronology)

In any case, GAIA, & ground surveys are crucial

Stellar Data Products

Stellar Data Products

Ν	Ρ	U	Т

1) PLATO light curves interferometry

2) Catalogs and follow-up

- * V1 : before launch
- * V2-V3 during operation and after

Intermediate data products

- Classical parameters : Teff, log g , log L (V,Mv(d), BC,AV), surface chemical abundances
- Scaling laws
- Stellar models and frequency calculations → grids of stellar models + on the fly for specific cases
- Surface boundary conditions for stellar models and oscillation frequencies
- Model atmospheres + convective flux/entropy tables + surface effects
- Stellar activity model → scaling laws for 1D stellar models
- Spot modelling, gyrochronology
- Simulated light curves Tests cases/benchmarks

(Plato noise (V, B-V,Ntel) + spots+low freq. Activity + granulation + oscillation)

- Limb darkening
- Inclination of stellar rotation axis

OUTPUT

DP3 : oscillation mode parameters + seismic mean internal rotation + inclination angle

DP4 : stellar activity and surface rotation measurements

DP5 : mass, radius and age of the (core program) F5-K7 stars + M dwarfs

PLATO - target stars : simulation of the north reference field

The Input Catalog is being built using existing star catalogues.

A field of reference (TBC) was defined

For that field, the star count yields :

- about 13 000 dwarfs and subgiants, spectral type F5-K7, 8
 ≤ mag ≤ 11, noise ≤ 34 ppm.√h, time sampling 25s
- about 29 000 dwarfs and subgiants with V ≤ 11, 34 ppm/h < NSR ≤ 80 ppm/h
- about 80 000 stars dwarfs and subgiants with V < 13, NS R < 80 ppm/h.

Etoiles de P1 Intervalles de masse et métallicité

PLATO - main requirements for the stellar core program

✓ **Requirements for DP5 and P1**: for a G0V star with $V \le 10$ (*Reference star :* $1M_{\odot}, 1R_{\odot}, 6000 K$)

- $\Delta R_{star}/R_{star} \le 3\%$
- $\Delta M_{star}/M_{star} \le 10\%$
- $\Delta Age/Age \le 10 \%$

✓ Requirements for DP3 and P1: ~0.1–0.2 µHz uncertainties around v_{max}

PLATO - noise

✓ The noise level for a target depends on the apparent magnitude and on the number of cameras

- Target photon noise ullet
- Random noise from the instrument
- Residual noise after correction from systematics lacksquare

Simulation from the Besançon galactic

PLATO will be able to detect solar-like stars from the main-sequence to the red giant branch

- ✓ Most of the tools required for (seismic and non –seismic) modeling are already available
 → Need to test/select them to organize the pipelines
 - Identify benchmark stars, case studies, simulation Identify case studies, simulations
 - Identify characterize benchmark stars (eclipsing binaries, cluster stars, Kepler legacy stars...)

- ✓ Most of the tools required for (seismic and non –seismic) modeling are already available
 → Need to test/select them to organize the pipelines
 - Identify benchmark stars, case studies, simulation Identify case studies, simulations
 - Identify characterize benchmark stars (eclipsing binaries, cluster stars, Kepler legacy stars...)
- ✓ PLATO requirements: radii (~ 2%), masses (~ 10%), ages (~ 10%) for a 'Sun'
 - Feasibility convincingly shown for PLATO reference star (Sun at V = 9) and for Kepler stars (blind tests, Kepler legacy stars)

Based on Trilegal galactic simulation Oscillation detection level based on scaling relations (B. Mosser)

Rescaled to fit the Sun seismic precision

GOV star with $V \le 10$ (*Reference star :* $1M_{\odot}$, $1R_{\odot}$, 6000 K)

Almost compliant with the requirements on the age

- ✓ Most of the tools required for (seismic and non –seismic) modeling are already available
 → Need to test/select them to organize the pipelines
 - Identify benchmark stars, case studies, simulation Identify case studies, simulations
 - Identify characterize benchmark stars (eclipsing binaries, cluster stars, Kepler legacy stars...)
- ✓ PLATO requirements: radii (~ 2%), masses (~ 10%), ages (~ 10%) for a 'Sun'
 - Feasibility convincingly shown for PLATO reference star (Sun at V = 9) and for Kepler stars (blind tests, Kepler legacy stars)
- ✓ Age precision/accuracy harder to reach for higher-mass stars (1.2 M_☉ à ~ 1.4 M_☉ <= core program)

- ✓ Most of the tools required for (seismic and non –seismic) modeling are already available
 → Need to test/select them to organize the pipelines
 - Identify benchmark stars, case studies, simulation Identify case studies, simulations
 - Identify characterize benchmark stars (eclipsing binaries, cluster stars, Kepler legacy stars...)
- ✓ PLATO requirements: radii (~ 2%), masses (~ 10%), ages (~ 10%) for a 'Sun'
 - Feasibility convincingly shown for PLATO reference star (Sun at V = 9) and for Kepler stars (blind tests, Kepler legacy stars)
- ✓ Age precision/accuracy harder to reach for higher-mass stars (1.2 M_☉ à ~ 1.4 M_☉ <= core program)
- ✓ Development of complementary seismic diagnostics that will increase the precision on the stellar (and therefore planetary) parameters
- ✓ Main contribution to age incertainties mainly due stellar models : improving/implementing/ testing the physics: atomic diffusion et autres transports, enveloppe and core overshoot, surface effects

\checkmark One must expect a variety of cases to deal with :

- a large diversity of planet-host stars and the stars without planets
- F5 to K7 stars in clusters, eclipsing binaries, etc...
- solar-like oscillating red giants,
- the particular case of bright stars

✓ Lessons from CoRoT/Kepler

From: bright spectroscopic eclipsing binaries with solar-like oscillations (graal !): 16 Cyg A and B mag, ...

To Kepler-11 (mag 13.9) host star of 6 planets , Trappist (M dwarf), retired A host star

Support from ground-based observations are crucial

Implication française pour la partie stellaire de PLATO

WP121

- ✓ WP12 (PSM): 23 pays, > 202 participants (mars 2017, en augmentation)
- 47 français 'enrollés' ou 'bénévoles' :
- Paris (OP,CEA,IAS), OCA, IRAP Toulouse, Besançon, LUPM Montpellier, IPAG Grenoble, Lyon

WP120

- ✓ Interfaces avec 'exoplanétistes'
- ✓ WP37 Implémentation (PDC)
- ✓ L0 → L1 R.Samadi :traitement bord et sol

Implication française pour la partie stellaire de PLATO

Premier instrument à détecter et caractériser des planètes comme la Terre autour d'étoiles solaires proches

Implication française pour la partie stellaire de PLATO

Premier instrument à détecter et caractériser des planètes comme la Terre autour d'étoiles solaires proches

Le succès de PLATO reposera beaucoup sur **TOUS** les développements en physique stellaire des années à venir !

En retour, PLATO (précision photométrique, durée d'observation, nombre d'étoiles) devrait ouvrir une nouvelle ère de développement pour la physique stellaire !

