Deciphering the oscillation spectrum of γ Dor and SPB stars

S. Christophe¹ J. Ballot² R.-M. Ouazzani¹ V. Antoci³ S.J.A.J. Salmon⁴

¹LESIA - Observatoire de Paris

²IRAP - Université de Toulouse

³SAC - Aarhus University

⁴STAR Institute - Université de Liège

March 27th / PNPS Colloquium 2018

PNPS: SISROT (D. Reese)

S.Christophe (LESIA)

イロト イポト イラト イラト

γ Dor and SPB stars

(high-order g modes)

Hundreds of them in the Kepler field of view

Moderate to fast rotators

(adapted from Royer 2009)

Gravity modes

No rotation: high-order g modes (n ≫ ℓ) regularly spaced in period (Tassoul 1980)

$$P_{n,\ell,m} \approx \frac{P_0(n+\epsilon)}{\sqrt{\ell(\ell+1)}} \qquad \Delta P_\ell = P_{n+1,\ell,m} - P_{n,\ell,m} \approx \frac{P_0}{\sqrt{\ell(\ell+1)}}$$

Buoyancy travel time

$$P_0 = 2\pi^2 \left(\int_{\mathcal{C}} \frac{N_{\rm BV}}{r} \mathrm{d}r \right)^{-1}$$

 Rotation: Coriolis force / centrifugal distortion

Our approach

- uniform rotation
- no centrifugal distorsion
- Ω_h = 0

• Asymptotic formulation $(n \gg \ell)$ in the co-rotating frame,

$$P^{
m co}_{n,\ell,m}pprox rac{P_0(n+\epsilon)}{\sqrt{\lambda_{\ell,m}(s)}},$$

 $\lambda_{\ell,m}$ eigenvalues of $s = \frac{2P_{n,\ell,m}^{\infty}}{P_{rot}}$ spin parameter Laplace's tidal equation

The oscillation spectrum of γ Dors and SPBs

► Stretching the pulsation periods ⇒ regular spacing pattern

$$P_{n,\ell,m}^{co} \to \sqrt{\lambda_{\ell,m}(s)} P_{n,\ell,m}^{co} \approx n(P_0 + \epsilon)$$

• The stretching function depends on ℓ , *m* and $\nu_{\rm rot}$.

< ロ > < 同 > < 回 > < 回 >

Searching for regularities

- 1. List of peak frequencies (e.g. pre-whitening)
- 2. Pick a guess for (ℓ, m) , choose a range of $\nu_{\rm rot}$
- 3. For each value of $\nu_{\rm rot}$,
 - Change to the co-rotating frame
 - Stretch the pulsation periods
 - Compute the DFT
- 4. Stack the DFT spectra by increasing $\nu_{\rm rot}$
- 5. Maximum of PSD is significant ?

< 6 b

Tests on synthetic spectra

 γ Dor, 1.86 M $_{\odot}$, mid-MS, ℓ = 1, m = -1, 0, 1

Stellar structure: 1D CLES models (Scuflaire+ 2008)
 + ad hoc rotation profile

 Oscillation modes: 2D complete calculations with ACOR (Ouazzani+ 2012,2015)

2 test cases:

- uniform rotation
- differential rotation

Uniform rotation

Only a few % of difference with the input values.

Both the asymptotic and TAR approximations contribute to it.

S.Christophe (LESIA)

(4) (5) (4) (5)

► Inputs: 15 μ Hz (core) / 7 μ Hz (envelope), P_0 = 4579 s

Signature of differential rotation

Consistent with the mode cavities (prograde modes go deeper)

S.Christophe (LESIA)

• • • • • • • • • • • •

Application on Kepler γ Dor stars

- 36 γ Dor stars: 4 stars of Ouazzani+ 2017
 32 from Van Reeth+ 2016
- ν_{rot} and P₀ estimated from prograde dipole modes.
- Constraints on angular momentum transport (R.M. Ouazzani's talk)

H 16

The SPB star KIC 3459297

• $\nu_{\rm rot} = 6.85 \pm 0.07 \ \mu {\rm Hz}, \ P_0 = 7018 \pm 190 \ {\rm s}$

11/16

Summary and prospects

A stellar-model-independent method to get the mode IDs, near-core $\nu_{\rm rot}$ and P_0 of γ Dor and SPB stars.

Prospects

- Extend our sample of γ Dor and SPB stars with measured ν_{rot} and P₀ (automation ?) to constrain angular momentum transport
- Differential rotation: what do we measure exactly? Is the TAR sufficient?
- Rossby modes are predicted by the TAR and observed in some γ Dor stars. (VanReeth+ 2016, Saio+ 2017)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Inputs:
$$\nu_{\rm rot} = 7 \ \mu \text{Hz}, \ P_0 = 4453 \text{ s}$$

► Max error: 17% on v_{rot} (retrograde) 9% on P₀ (zonal)

S.Christophe (LESIA)

The oscillation spectrum of γ Dors and SPBs

< 미 > < 큔 > < 큰 > < 큰 > < 큰 >

3 13/10

Comparison with Van Reeth+ 2016

- VR16 modelled period spacing patterns using a direct approach (model-dependent, asymptotic TAR)
- Both methods agree on v_{rot}
- P_0 not always compatible

Rossby modes: an example (γ Dor)

S.Christophe (LESIA)

The oscillation spectrum of γ Dors and SPBs

PS Colloquium 2018 15

5/16

Rossby modes: an example (γ Dor)

6/16