Astrophysique de laboratoire et analyse de spectres stellaires

<u>Lydia Tchang-Brillet</u>, Christian Balança (PI), Christophe Blaess, Norbert Champion, Fabrice Dayou, Nicole Feautrier et Sylvie Sahal-Bréchot

Ali Meftah* et Jean-François Wyart** (ass.)

LERMA, Observatoire de Paris-Meudon, PSL Research University, Sorbonne Université, UPMC Univ. Paris 6, CNRS, UMR 8112, F-92195 Meudon, France

* Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, BP 17 RP, 15000 Tizi-Ouzou, Algeria

** Laboratoire Aimé Cotton, UMR9188,CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, rue Aimé Cotton, F-91405 Orsay Cedex, France

Motivations générales

Avancées rapides des observations Nécessité d'une grande quantité de données atomiques et moléculaires de qualité pour caractériser les conditions physiques hors-ETL et l'évolution chimique des étoiles

Nous proposons : nos compétences en physique atomique et moléculaire Etudes théoriques et expérimentales en laboratoire + étroite collaboration avec des astrophysiciens

Thématiques soutenues par le PNPS (aussi par Plas@Par, CS de l'Observatoire de Paris, VAMDC, Gaia)

Modélisation des atmosphères d'étoiles froides - collisions

- Collisions atomiques et exploitation de GAIA
- Excitation rotationnelles de petites molécules
- Photodissociation de molécules diatomiques

Christian Balança, Fabrice Dayou, Nicole Feautrier et collaborateurs

Spectre d'émission à haute réolution d'ions atomiques lourds dans l'UV lointain Données de laboratoire→ HST, FUSE, SOHO→ Futures missions : WSO, LUVOIR Lydia Tchang-Brillet, Ali Meftah, Jean-François Wyart, Norbert Champion, Christophe Blaess et collaborateurs

Calcul de paramètres d'élargissement Stark Sylvie Sahal-Bréchot et collaborateurs

Mise en ligne des données Base Stark-b.obspm.fr Portail MOLAT.obspm.fr

Programme National de Physique Stellaire

Collisions : modélisation de spectres hors-ETL

 populations des niveaux ← cinétique des processus radiatifs et collisionnels

n_P: densité des perturbateurs

 $K_{21}(T)$: taux de coll. \propto section efficace σ

→ Collisions de molécules avec
 H₂:
 environnements circumstellaires

Calcul des taux : excitation électronique d'atomes par H ou excitation ro-vibrationnelle de molécules par H₂

Deux étapes :

- Calculs de chimie quantique → potentiels d'interaction et opérateurs de couplage en fonction de la configuration nucléaire (distances internucléaires, angles etc) Coll. M. Guitou, A. Mitrushchenkov (Paris-Est)
- Etude de la dynamique : méthodes quantiques à faibles énergies et recherche de méthodes approchées pour hautes énergies Coll. A. Belyaev (St Petersburg)

Cas récemment étudiés Excitation électronique par H : Li+H, Na+H, Mg+H Excitation ro-vibrationnelle par H_2 : SO₂, SiO, C₂H

En cours et projets : Ca + H, O+H, Fe + H $N_2H^+ + H_2$, C₄H⁻ + H₂

Exemple de Mg+H

PNPS, 26/28-3-2018, Montpellier

Guitou, Spielfiedel, Feautrier, Chem. Phys. Lett. 2010

Impact des données

coll. F. Thévenin and T. Merle, Guitou et al. Chem. Phys. 2015

- Equilibre statistique + transfert radiatif (MARCS model, code MULTI)
- Inclusion de processes radiatifs + collisions (e, H avec ou sans EC)

- Conclusions Collisions avec H : excitation/désexcitation 10⁻⁹-10⁻¹⁰ cm³/s ; réduisent l'écart à l'ETL pour les atmosphères pauvres en métaux
 - Importance du processus d'échange de charges (EC) : 10⁻⁸-10⁻⁹ cm³/s
 - Formule de Drawin non fiable (absence de base physique et imprécision d'un facteur $\rightarrow 10^5$)

Spectres d'émission VUV d'ions lourds moyennement chargés:

métaux de transition, Lanthanides, actinides

Spectres complexes

 d^N , $d^{N-1}nl$, f^N , $f^{N-1}nl$

355 367

371

PNPS, 26/28-3-2018, Montpellier

Fe II (d):

Sn II (p):

1857

47

(Kasen, Badnell and Barnes 2013 ApJ)

Abondances des étoiles chimiquement particulières Eu III lines in Ap star HD 144897

Comparaison s'un spectre observé dans la région de la raie Eu III λ7750.59 Å line (trait double) et d'un spectre synthétique avec les paramèters atomiques dérivés du travail présent (trait plein). PNPS, 26/28-3-2018, Montpellier Coalescence de deux étoiles à neutrons : lanthanides ionisés formés par processus r dans la matière éjectée

Opacité de Nd 10-100 fois plus grandes que Fe

Spectrographe UV sous vide à incidence normale de 10m de l'Observatoire Paris - Meudon

Sources utilisées: Etincelles sous vide haute tension

pour ions atomiques

Décharge Penning pour spectres moléculaires

- λ : 200-3000 Å
- Réseau concave holographique 3600 traits/mm
- dispersion = 0.25 Å /mm dans le plan focal
- Résolution ~ 150 000 (8mÅ, fente 30μ m)
- Plaques photographiques $\Rightarrow \Delta \lambda = \pm 0.001 0.005 \text{ Å}$
- Image plates ⇒ réponse linéaire en intensités 1-10⁵

Fonctions de partition de UII pour une température typique d'étoile pauvre en métaux

T= 4825 K
$$\Leftrightarrow$$
 k_BT= 3353.541 cm⁻¹
 $Q(T) = \sum_{i} (2J+1) \exp\left(-\frac{E_i}{k_B T}\right)$

 k_B : Boltzmann Constant

Incluant toutes les $E_i < 50\ 000\ cm^{-1}$ (niveaux pairs et impairs)

Energies calculées après ajustement paramétrique : Q = 107.84 + 13.15 = 120.99 Substitution par énergies experimentales disponibles : Q = 109.67 + 13.32 = 122.99 $\Delta \sim 2\%$

Calculs Hartree-Fock ab initio : Q = 87.13 + 2.06 = 89.19 $\Delta \sim 28\%$

Données disponibles sur MOLAT.obspm.fr

Eu III

90 new lines, 30 new levels
 (1150 Ritz wavelengths)

Tm IV

- 760 lines, 209 energy levels
 Nd IV
- 1426 lines, 232 levels
 Nd V
- 464 lines 152 levels

Yb IV

- 1023 lines, 193 energy levels
 Yb V
- 1080 lines, 242 energy levels
 Er IV (2016)
- 591 lines, 120 energy levels
- à venir : U II , Os III

En projet :

Er, Eu, Dy ionisés. Coll. équipe Meftah en développement à l'Université de Tizi-Ouzou (Algérie), 2 MCF, 3 doctorants

Ions de Mn, Fe, Ni. Coll. Ryabtsev et al, Institut de Spectroscopie, Troitsk, Moscou (Russie)

2e+07

Surface Gravity

4e+07

Bainbridge et al, Universe **2017**

6e+07

Préliminaires

Mesure du champ magnétique sans la polarisation?

Fe X: magnetic field induced transition (MIT)

Schematic energy-level diagram for Chlorine-like ions with Z < 26 and zero nuclear spin, where ${}^{4}D_{7/2}$ is the lowest level in the configuration $3s^{2}3p^{4}3d$. For ions with Z > 26, a level crossing has occurred and ${}^{4}D_{5/2}$ is lower than ${}^{4}D_{7/2}$. Under the influence of an external magnetic field, an E1 transition opens up from the ${}^{4}D_{7/2}$ to the ground state through mixing with the ${}^{4}D_{5/2}$.

Coll. R. Hutton, Y. Yang (Shanghai), T. Brage (Lund)

Test d'un prototype polarimère UV Schema de montage (C. Neiner LUVOIR/POLLUX)

Largeurs et déplacements des raies des atomes neutre et ionisés dus aux collisions avec les électrons et les ions dans un plasma. Applications stellaires

> Sylvie Sahal-Bréchot, en collaboration avec M.S.Dimitrijević, et son équipe de lObservatoire de Belgrade, N. Ben Nessib, et son équipe tunisienne

- Développement de la base de données STARK-B
 - <u>http://stark-b.obspm.fr</u>
- Applications stellaires aux naines blanches et aux étoiles particulières:
 - 1 exemple: O I
 - Dufour, Ben Nessib, Sahal-Bréchot & Dimitrijević, " Stark broadening of carbon and oxygen lines in hot DQ white dwarf stars: recent results and applications", 2011, Baltic Astronomy, Vol. 20, p. 511-515

Terminés : C II, B IV, Xe VI et Xe VIII Projets : Cr VI, Ar VII et Ar II

Fig. 1. Fit of a model to the carbon lines for the hot DQ SDSS J1153+0056. Oxygen lines, which are not fitted, are indicated by tick marks. The thick line is the best solution obtained by fitting the optical (MMT) data. The insert shows the $H\alpha$ region (SDSS spectroscopic observations). The C/O ratio is fixed to 1 in this preliminary analysis. This represent a significant improvement over the 'first generation' fits of Dufour et al. (2009, see their Fig. 2).

Merci !