Dynamo action in rotating systems

Ludovic Petitdemange and collaborators: R.Raynaud, M.Schrinner, E.Dormy, M.Rieutord...

LRA-LERMA ÉCOLE NORMALE SUPÉRIEURE

PNPS Montpellier 26th of March, 2018

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Introduction

- Observations and Motivation
- 2 Modelling
 - Governing equations
 - Set up: Boussinesq
 - Set up: Anelastic model (density stratification)
 - Method: systematic parameters study
- 3 Magnetic field topology in Boussinesq/Anelastic models
- Particular effects induced by the density stratification
- Influence of magnetic fields in spherical rotating dynamos
- 6 Conclusion

Observations and Motivation

Different magnetospheric configurations

Axisymmetric (m = 0) and non-axisymmetric (m = 1) configurations

Observations and Motivation

Large-scale magnetic topologies of cool stars

Rotation period (d)

Symbol size indicates relative magnetic energy densities, colour illustrates field configurations (blue/red for toroidal/poloidal fields respectively), shape depicts the degree of axisymmetry of the poloidal field component.

Donati, J.-F. & Landstreet, J. D., 2009, ARA&A, 47, 333

Introduction

- Observations and Motivation
- 2 Modelling
 - Governing equations
 - Set up: Boussinesq
 - Set up: Anelastic model (density stratification)
 - Method: systematic parameters study

3 Magnetic field topology in Boussinesq/Anelastic models

- Particular effects induced by the density stratification
- Influence of magnetic fields in spherical rotating dynamos

6 Conclusion

Governing equations

MHD system

Dimensionless equations

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{E} \nabla P + \frac{Ra}{E} \frac{r}{r_0} T \mathbf{e}_r - \frac{2}{E} \mathbf{e}_z \times \mathbf{v} \\
+ \nabla^2 \mathbf{v} + \frac{1}{PmE} (\nabla \times \mathbf{B}) \times \mathbf{B}, \quad (1)$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \frac{1}{Pm} \nabla^2 \mathbf{B}, \quad (2)$$

$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \frac{1}{Pr} \nabla^2 T, \quad (3)$$

$$\nabla \cdot \mathbf{v} = 0, \quad \nabla \cdot \mathbf{B} = 0. \quad (4)$$

 $D = r_o - r_i$: unit of length, $\tau = D^2/\nu$: unit of time, $\sqrt{\rho \mu \eta \Omega}$: unit of *B* and ΔT : unit of temperature.

Set up: Boussinesq

A simplified model

Set up

- A Boussinesq fluid in a rotating spherical shell with
 - ★ constant kinematic viscosity v
 - \star constant thermal diffusivity κ
 - \star constant magnetic diffusivity η
- Convection is driven by an imposed temperature difference ΔT between the inner and outer sphere

Boundary conditions

- fixed temperature
- stress-free or no-slip for the flow
- insulating b. c. for the magnetic field

Set up: Boussinesq

MHD system

Dimensionless equations

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = Pm \left[-\frac{1}{E} \nabla \frac{P'}{w^n} + \frac{Pm}{Pr} Ra \frac{S}{r^2} \mathbf{e}_r - \frac{2}{E} \mathbf{e}_z \times \mathbf{v} + \mathbf{F}^v + \frac{1}{E w^n} (\nabla \times \mathbf{B}) \times \mathbf{B} \right],$$
(5)

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \nabla^2 \mathbf{B}, \qquad (6)$$

$$\frac{\partial S}{\partial t} + \mathbf{v} \cdot \nabla S = w^{-n-1} \frac{Pm}{Pr} \nabla \cdot \left(w^{n+1} \nabla S \right) + \frac{Di}{Pr} \left[F^{-1} w^{-n} (\nabla \times \mathbf{B})^2 + O^{\nu} \right]$$
(7)

$$\nabla \cdot (w^n \mathbf{v}) = 0, \tag{8}$$

$$\nabla \cdot \mathbf{B} = 0. \tag{9}$$

Set up: Anelastic model (density stratification)

A simplified model

Set up

- A perfect gas in a rotating spherical shell with
 - ★ constant kinematic viscosity $v = \mu/\rho$
 - \star constant thermal diffusivity κ
 - $\star\,$ constant magnetic diffusivity $\eta\,$
- Convection is driven by an imposed entropy difference ΔS between the inner and outer sphere

Boundary conditions

- fixed entropy
- stress-free b. c. for the velocity field
- insulating b. c. for the magnetic field

Method: systematic parameters study

Output parameters (1)

- kinetic and magnetic energy densities E_k and E_m
- Elsasser number $\Lambda = 2E_{\rm m}E/Pm$
- Rossby number $Ro = \sqrt{2E_k}E/Pm$ ("inertia/Coriolis")
- local Rossby number $Ro_{\ell} = Ro_{c} \ell_{c} / \pi$ ℓ_{c} stands for the mean harmonic degree of the velocity component \mathbf{v}_{c} from which the mean zonal flow has been subtracted

$$\ell_c = \sum_{\ell} \ell \frac{\langle (\mathbf{v}_c)_{\ell} \cdot (\mathbf{v}_c)_{\ell} \rangle}{\langle \mathbf{v}_c \cdot \mathbf{v}_c \rangle}.$$
 (10)

• The topology of the field is characterized by the relative dipole field strength, *f*_{dip}, defined as the time-average ratio on the outer shell boundary of the dipole field strength to the total field strength.

Method: systematic parameters study

Dimensionless parameters in Boussinesq models

Order of magnitude for the simulations									
Ra	$\frac{\alpha g \Delta TD}{\gamma \Omega}$	$\leq 80Ra_c$							
Рm	v/η	0.20 ≤ <i>Pm</i> ≤ 12							
Pr	v/κ	0.3 - 3							
Е	$v/(\Omega D^2)$	$3.10^{-4} \ge E \ge 10^{-5}$							
χ	r_i/r_o	0.35 to 0.65							
Λ	$B_{ m rms}^2/(\mu ho \eta \Omega)$	$0.05 \leq \Lambda \leq 45$							
Ro	$U_{\sf rms}/(\Omega L_c)$	$0.005 \le Ro_\ell \le 0.2$							
Re	$(U_{\rm rms}D)/v$	10 ≤ <i>Re</i> ≤ 1100							
Rm	$(U_{\rm rms}D)/\eta = PmRe$	$40 \le Rm \le 1000$							

Aim: Deduce systematic behaviours.

Method: systematic parameters study

Systematic parameter studies (anelastic models)

Seven control parameters									
Rayleigh number	Ra	$\frac{GMd\Delta S}{\nu\kappa c_p}$	<i>©</i> (10 ⁶)						
magnetic Prandtl number	Рm	$ u/\eta $	0.2 ≤ <i>Pm</i> ≤ 5						
Prandtl number	Pr	v/κ	0.1 to 3						
Ekman number		$v/(\Omega D^2)$	$10^{-3} \ge E \ge 10^{-5}$						
aspect ratio	χ	r_i/r_o	0.35 to 0.65						
polytropic index	п	$1/(\gamma - 1)$	2						
number of density scale heights	N _ρ	$\ln(arrho_i/arrho_o)$	≤ 4						
	Seven control parameters Rayleigh number magnetic Prandtl number Prandtl number Ekman number aspect ratio polytropic index number of density scale heights	Seven control parametersRayleigh number Ra magnetic Prandtl number Pm Prandtl number Pr Ekman number E aspect ratio χ polytropic index n number of density scale heights N_{ϱ}	Seven control parametersRayleigh number Ra $\frac{GMd\Delta S}{\nu\kappa c_{\rho}}$ magnetic Prandtl number Pm ν/η Prandtl number Pr ν/κ Ekman number E $\nu/(\Omega D^2)$ aspect ratio χ r_i/r_o polytropic index n $1/(\gamma-1)$ number of density scale heights N_{ϱ} $\ln(\varrho_i/\varrho_o)$						

The anelastic version of PaRoDy reproduces the anelastic dynamo benchmark.

Introduction

Observations and Motivation

2 Modelling

- Governing equations
- Set up: Boussinesq
- Set up: Anelastic model (density stratification)
- Method: systematic parameters study

3 Magnetic field topology in Boussinesq/Anelastic models

- Particular effects induced by the density stratification
- Influence of magnetic fields in spherical rotating dynamos

6 Conclusion

Extensive parameter survey of geodynamo models

Dynamo regimes in geodynamo simulations

Christensen & Aubert 2006

In geodynamo models

Dipole field strenght f_{dip} : time-average ratio on the outer shell boudary of the mean dipole field strength to the field strength in harmonic degrees I=1-12.

Existence of two dynamo branches

dipolar dynamo multipolar dynamo large scale field frequent polarity reversals, oscillatory solutions kinematically stable kinematically unstable mainly axisymmetric mainly non axisymmetric 1.0 1.0 0.8 0.8 0.6 0.6 \mathbf{f}_{dip} 0.4 0.4 À AAAA € 0.2 0.2 9 0.0 0.0 0.01 0.10 1.00 0.01 0.10 1.00 Ro Ro. no-slip b. c. stress-free b. c.

Schrinner, M., Petitdemange, L., & Dormy, E. 2012, ApJ, 752, 121

Bistability

Bistability SF/SF B.C.

multipolar field branch

Oscillatory dynamos

Dipolar field branch

Dipolar and stationary

Schrinner, Petitdemange, Dormy (2012) Ap.

Dynamo regimes in Boussinesq and Anelastic models

Rotation period (d)

Ra/Ra-

Raynaud et al (2018) A&A

Introduction

Observations and Motivation

2 Modelling

- Governing equations
- Set up: Boussinesq
- Set up: Anelastic model (density stratification)
- Method: systematic parameters study

3 Magnetic field topology in Boussinesq/Anelastic models

- Particular effects induced by the density stratification
- Influence of magnetic fields in spherical rotating dynamos

6 Conclusion

•

0.12 0.14

0.08 Roj

Role of inertia: local Rossby number depends on r

 $N_{\rho} = 0.5$ $N_{\rho} = 1.5$

0.08 Ro_{ℓ} $N_{
ho} = 2.0$

Role of inertia: local Rossby number depends on r

 $f_{d\mu_{m}}$ • Ro

 $N_{0} = 0.5$

 $N_{0} = 1.5$ $N_{0} = 2.0$ da... • Ro 0.12 $Ra = 5.4 \times 10^6$; $N_a = 2.5$ 0.11 $Ra = 6.4 \times 10^6$; $N_a = 2.5$ $Ra = 7.4 \times 10^6$; $N_a = 2.5$ 0.10 $Ra = 9.0 \times 10^6$; $N_{\rho} = 2.5$ $Ra = 8.0 \times 10^6; N_a = 3.0$ 0.09 $Ra = 9.0 \times 10^6$; $N_a = 3.0$ 0.08 Ro_l^* 0.070.06 0.050.040.03

Local Rossby number as a function of radius for dipolar (solid lines) and multipolar (dashed lines) dynamos at $(N_{o} = 2.5, Pm = 2)$ (thin lines) and $(N_{\rho} = 3, Pm = 4)$ (thick lines).

1.6

1.4

2.40

-0.81-1.60

-2.40

Snapshots

 $B_r(r=r_o)$

 $N_{
ho} = 1.5, Pm = 0.75, Ra/Ra_{
m C} = 5$

-0.40 - 0.32 - 0.24 - 0.16 - 0.08	0.00	0.08	0.16	0.24	0.32	0.40

 $N_{\rho} = 2.5, Pm = 2, Ra/Ra_{c} = 3.4$

Introduction

Observations and Motivation

2 Modelling

- Governing equations
- Set up: Boussinesq
- Set up: Anelastic model (density stratification)
- Method: systematic parameters study
- 3 Magnetic field topology in Boussinesq/Anelastic models
- Particular effects induced by the density stratification
- Influence of magnetic fields in spherical rotating dynamos
- 6 Conclusion

Strong/weak field dynamos in geoynamo simulations

Observations: Moutou et al 2017

Dipolar dynamos with $Ro_{\ell} > 0.1$ in the strong field regime (high Pm as Rm = Re Pm.

Strong field dynamos in geodynamo simulations when $\Lambda'>1$ (

Dormy 2016 JFM).

Menu, Petitdemange, Galtier in prep

The magnetic fields strongly affects the convective length scale

Geodynamo simulations with the parameters: $E = 10^{-4}$, $Ra/Ra_C \approx 6$ and Pr = 1 (Petitdemange (2018) *PEPI*). The magnetic field can strongly affect heat transfer and the velocity field. In strong field dynamos, the size of convection cells is almost the radius/gap of the convective zone.

Introduction

Observations and Motivation

2 Modelling

- Governing equations
- Set up: Boussinesq
- Set up: Anelastic model (density stratification)
- Method: systematic parameters study
- Magnetic field topology in Boussinesq/Anelastic models
- Particular effects induced by the density stratification
- Influence of magnetic fields in spherical rotating dynamos

6 Conclusion

Conclusion and perspectives

- Varying dimensionless parameters of the aspect ratio affects Ro_{ℓ} .
- Dipolar fields cannot be maintained when Ro_ℓ if the field strength is weak (Λ' < 1).
- Dipolar fields are relevant $\forall N_{\varrho}$ but $Ro_l(r)$
- Existence of a bistable regime in Boussinesq/Anelastic models: oscillatory dynamos are αΩ-dynamos and dipole-dominated ones are α².
- Oscillatory dynamos : Parker waves

In progress:

- Strong field dynamos in anelastic models.
- Influence of Pr.
- Effect of the magnetic field on the gravity darkening.

• ...