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Observations and Motivation

Different magnetospheric configurations

Axisymmetric (m = 0) and non-axisymmetric (m = 1) configurations

Ridley, V. A., Jovimagnetic secular variation, Doctoral thesis, 2013
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Observations and Motivation

Large-scale magnetic topologies of cool stars

Symbol size indicates relative magnetic energy densities, colour
illustrates field configurations (blue/red for toroidal/poloidal fields
respectively), shape depicts the degree of axisymmetry of the poloidal
field component.
Donati, J.-F. & Landstreet, J. D., 2009, ARA&A, 47, 333
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Governing equations

MHD system

Dimensionless equations

∂v
∂t

+ (v ·∇)v = − 1
E
∇P + Ra

E
r
r0

T er − 2
E

ez ×v

+∇2v+ 1
PmE

(∇×B)×B , (1)

∂B
∂t

= ∇× (v×B)+ 1
Pm

∇2B , (2)

∂T
∂t

+v ·∇T = 1
Pr

∇2T , (3)

∇·v= 0 , ∇·B= 0 . (4)

D = ro − ri : unit of length, τ=D2/ν: unit of time,
√
ρµηΩ: unit of B

and ∆T : unit of temperature.
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Set up: Boussinesq

A simplified model

Set up
A Boussinesq fluid in a rotating
spherical shell with
? constant kinematic viscosity ν
? constant thermal diffusivity κ
? constant magnetic diffusivity η

Convection is driven by an imposed
temperature difference ∆T between
the inner and outer sphere

Boundary conditions
fixed temperature

stress-free or no-slip for the flow

insulating b. c. for the magnetic field
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Set up: Boussinesq

MHD system

Dimensionless equations

∂v
∂t

+v ·∇v = Pm
[− 1

E
∇ P ′

wn + Pm
Pr

Ra
S
r2 er − 2

E
ez ×v

+Fν+ 1
E wn (∇×B)×B

]
, (5)

∂B
∂t

= ∇× (v×B)+∇2B , (6)

∂S
∂t

+v ·∇S = w−n−1 Pm
Pr

∇·
(
wn+1∇S

)
+Di

w

[
E−1w−n(∇×B)2 +Qν

]
, (7)

∇· (wnv) = 0 , (8)

∇·B = 0 . (9)
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Set up: Anelastic model (density stratification)

A simplified model

Set up
A perfect gas in a rotating spherical
shell with
? constant kinematic viscosity ν=µ/ρ
? constant thermal diffusivity κ
? constant magnetic diffusivity η

Convection is driven by an imposed
entropy difference ∆S between the
inner and outer sphere

Boundary conditions
fixed entropy

stress-free b. c. for the velocity field

insulating b. c. for the magnetic field
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Method: systematic parameters study

Output parameters (1)

kinetic and magnetic energy densities Ek and Em

Elsasser number Λ= 2EmE/Pm

Rossby number Ro =√
2Ek E/Pm (“inertia/Coriolis”)

local Rossby number Ro` =Roc `c/π
`c stands for the mean harmonic degree of the velocity
component vc from which the mean zonal flow has been
subtracted

`c =
∑
`

`
< (vc)` · (vc)` >

< vc ·vc >
. (10)

The topology of the field is characterized by the relative dipole
field strength, fdip, defined as the time-average ratio on the
outer shell boundary of the dipole field strength to the total
field strength.
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Method: systematic parameters study

Dimensionless parameters in Boussinesq models

Order of magnitude for the simulations

Ra αg∆TD
νΩ ≤ 80Rac

Pm ν/η 0.20≤Pm ≤ 12
Pr ν/κ 0.3−3
E ν/(ΩD2) 3.10−4 ≥E ≥ 10−5

χ ri/ro 0.35 to 0.65
Λ B2

rms/(µ%ηΩ) 0.05≤Λ≤ 45
Ro Urms/(ΩLc) 0.005≤Ro` ≤ 0.2
Re (UrmsD)/ν 10≤Re ≤ 1100
Rm (UrmsD)/η=PmRe 40≤Rm ≤ 1000

Aim: Deduce systematic behaviours.
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Method: systematic parameters study

Systematic parameter studies (anelastic models)

Seven control parameters

Rayleigh number Ra GMd∆S
νκcp

O(106)

magnetic Prandtl number Pm ν/η 0.2≤Pm ≤ 5
Prandtl number Pr ν/κ 0.1 to 3
Ekman number E ν/(ΩD2) 10−3 ≥E ≥ 10−5

aspect ratio χ ri/ro 0.35 to 0.65
polytropic index n 1/(γ−1) 2
number of density scale heights N% ln(%i/%o) ≤ 4

The anelastic version of PaRoDy reproduces the anelastic dynamo
benchmark.
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Extensive parameter survey of geodynamo models

Christensen & Aubert (2006) 14 / 26
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In geodynamo models
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Existence of two dynamo branches

dipolar dynamo multipolar dynamo
large scale field frequent polarity reversals, oscillatory solutions

kinematically stable kinematically unstable
mainly axisymmetric mainly non axisymmetric

no-slip b. c. stress-free b. c.
Schrinner, M., Petitdemange, L., & Dormy, E. 2012, ApJ, 752, 121
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Bistability
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Dynamo regimes in Boussinesq and Anelastic models

  

De la géodynamo au magnétisme stellaire
Etude de la topologie magnétique à l'aide

 de simulations numériques directes

Effondrement de la composante
Dipolaire du champ magnétique 
initialement dominante si

Nombre de
 Rossby local
 

Résultats pertinents 
dans les modèles
Boussinesq ρ=ρ

0

et anélastique :

             N
ρ
=1.5

Nos études de paramètres,
permettent de comprendre 
la génération des champs 
dans les zones convectives
Ex : la rotation différentielle 
joue un rôle important pour 
les dynamos oscillantes.

Schrinner et al (2012), ApJ.
Schrinner et al (2014) A&A
Raynaud et al (2014) A&A
Raynaud et al (2015) MNRAS
Petitdemange (2018) PEPI
Raynaud et al (2018) A&A

Magnetic diffusion time
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Role of inertia: local Rossby number depends on r
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Local Rossby number as a

function of radius for dipolar

(solid lines) and multipolar

(dashed lines) dynamos at

(N% = 2.5,Pm = 2) (thin lines)

and (N% = 3,Pm = 4) (thick

lines).

0.4 0.6 0.8 1.0 1.2 1.4 1.6

r

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

R
o? l

Ra = 5.4× 106;N% = 2.5

Ra = 6.4× 106;N% = 2.5

Ra = 7.4× 106;N% = 2.5

Ra = 9.0× 106;N% = 2.5

Ra = 8.0× 106;N% = 3.0

Ra = 9.0× 106;N% = 3.0

20 / 26



Introduction Modelling Magnetic field topology in Boussinesq/Anelastic models Particular effects induced by the density stratification Influence of magnetic fields in spherical rotating dynamos Conclusion

Role of inertia: local Rossby number depends on r

N% = 0.5 N% = 1.5 N% = 2.0

0.02 0.04 0.06 0.08 0.10 0.12 0.14
Ro`

0.0

0.2

0.4

0.6

0.8

1.0

f d
ip
a
x

0.02 0.04 0.06 0.08 0.10 0.12 0.14
Ro`

0.0

0.2

0.4

0.6

0.8

1.0

f d
ip
a
x

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Ro`

0.0

0.2

0.4

0.6

0.8

1.0

f d
ip
a
x

Local Rossby number as a

function of radius for dipolar

(solid lines) and multipolar

(dashed lines) dynamos at

(N% = 2.5,Pm = 2) (thin lines)
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lines).
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Snapshots
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Strong/weak field dynamos in geoynamo simulations

Observations: Moutou et al 2017

Dipolar dynamos with
Ro` > 0.1 in the strong field
regime (high Pm as
Rm =RePm.

Menu, Petitdemange, Galtier in prep

E
=

1.
10

−4
E
=

3.
10

−5

Strong field dynamos in geodynamo simulations when Λ′ > 1 (

Dormy 2016 JFM).
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The magnetic fields strongly affects the convective length scale

Geodynamo simulations with the parameters: E = 10−4,

Ra/Rac ≈ 6 and Pr = 1 (Petitdemange (2018) PEPI).

The magnetic field can strongly
affect heat transfer and the velocity
field. In strong field dynamos, the
size of convection cells is almost the
radius/gap of the convective zone.
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Conclusion and perspectives

Varying dimensionless parameters of the aspect ratio affects Ro`.

Dipolar fields cannot be maintained when Ro` if the field strength is
weak (Λ′ < 1).

Dipolar fields are relevant ∀N% but Rol(r)

Existence of a bistable regime in Boussinesq/Anelastic models:
oscillatory dynamos are αΩ-dynamos and dipole-dominated ones
are α2.

Oscillatory dynamos : Parker waves

In progress:

Strong field dynamos in anelastic models.

Influence of Pr .

Effect of the magnetic field on the gravity darkening.

. . .
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