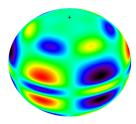
Ratios & phases

 α Ophiuchi

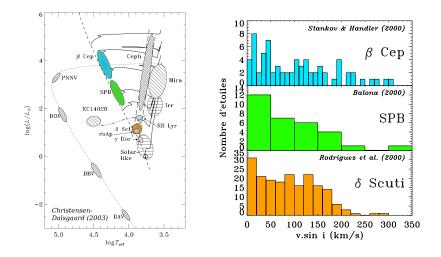

Conclusion

Mode identification in rapidly rotating stars

D. R. Reese¹, M.-A. Dupret², and M. Rieutord³

¹LESIA, ²ULg, ³IRAP SISROT PNPS + ANR ESRR

27 March, 2018


Introduction	ntroc	nction

Ratios & phases

 α Ophiuchi

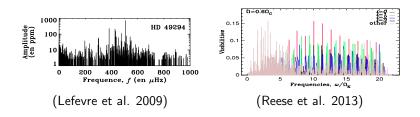
Conclusion

Introduction

many rapidly rotating pulsating stars

Intr	nd	tin	n

Ratios & phases


 α Ophiuchi

Conclusion

Introduction

Mode identification is difficult

- lack of *simple* frequency patterns, both in the observations and the theoretical expectations
- classical pulsators: no predictions for mode amplitudes

m	ro	du	cti	or	1

Ratios & phases

 α Ophiuchi

Conclusion

Introduction

Mode identification techniques

- photometric
 - amplitude ratios
 - phase differences
 - advantage: intrinsic amplitude factors out
- spectroscopic
 - Line Profile Variations (LPVs)
 - advantage: rich information content

m	ro	du	cti	or	1

Ratios & phases

 α Ophiuchi

Conclusion

Introduction

Mode identification techniques

- photometric
 - amplitude ratios
 - phase differences
 - advantage: intrinsic amplitude factors out
- spectroscopic
 - Line Profile Variations (LPVs)
 - advantage: rich information content

• the challenge: apply these techniques to rapid rotators

.⊒...>

2 Pulsations of rapidly rotating stars

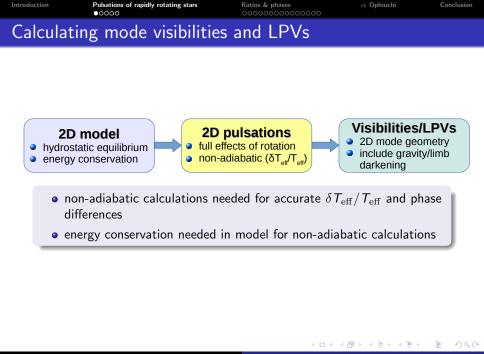
Pulsation calculations

3 Ratios & phases

- Calculating mode visibilities
- Towards mode identification?
- Amplitude ratios and phase differences

(4) α Ophiuchi

< ∃ >


Pulsations of rapidly rotating stars Pulsation calculations

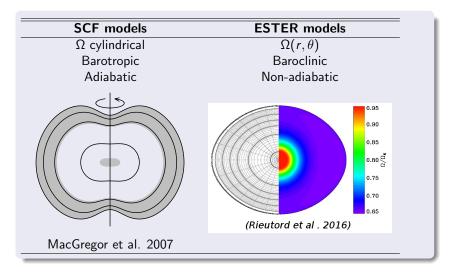
Ratios & phases

- Calculating mode visibilities
- Towards mode identification?
- Amplitude ratios and phase differences

(4) α Ophiuchi

5 Conclusion

In				


Ratios & phases

 α Ophiuchi

≣⊳

Conclusion

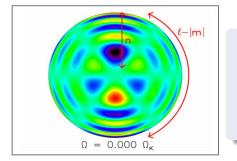
Rapidly rotating models

Introduction	Pulsations of rapidly rotating stars	Ratios & phases	α Ophiuchi	Conclusion
The TOP	pulsation code			

- TOP = Two-dimensional Oscillation Program
- fully includes centrifugal deformation
- can handle baroclinic models
- includes non-adiabatic effects

http://johnmannophoto.com/blog/?p=103

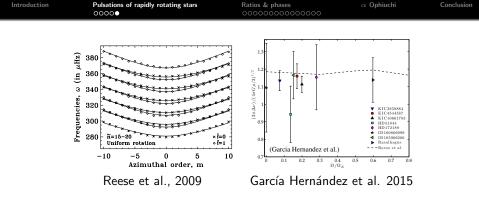
∃ ⊳


	tr				

Ratios & phases

 α Ophiuchi

Conclusion


Island modes

۰	new	qua	ntum numbers:
	ñ	=	$2n+\varepsilon$,
	$\tilde{\ell}$	=	$\frac{\ell- m -\varepsilon}{2},$
	ε	≡	ℓ + <i>m</i> [2]

▲ 臣 ▶ → 臣 ▶ …

æ

$$\omega_{\tilde{n},\,\tilde{\ell},\,\tilde{m}}\simeq\tilde{n}\Delta_{\tilde{n}}+\tilde{\ell}\Delta_{\tilde{\ell}}+m^{2}\Delta_{\tilde{m}}-m\Omega+\tilde{\alpha}$$

- Δ_ñ and Δ_{ℓ̃} = ω_{ℓ̃+1} − ω_{ℓ̃} from ray dynamics (Lignières & Georgeot, 2008, 2009, Pasek et al. 2011, 2012)
- $\Delta_{\tilde{n}}$ scales with mean density (Reese et al. 2008, García Hernández et al. 2013)

∢ ≣ →

1 Introduction

Pulsations of rapidly rotating starsPulsation calculations

3 Ratios & phases

- Calculating mode visibilities
- Towards mode identification?
- Amplitude ratios and phase differences

(4) α Ophiuchi

5 Conclusion

Introduction					

Ratios & phases

 α Ophiuchi

Conclusion

Calculating mode visibilities

Previous works

- Daszyńska-Daszkiewicz et al. (2002, 2007), Townsend (2003)
 - non-adiabatic treatment
 - approximate treatment of rotation
- Reese et al. (2013) (see also Lignières et al. 2006, Lignières & Georgeot 2009)
 - full treatment of rotation
 - adiabatic calculations
- Savonije (2013)
 - full treatment of Coriolis force, but no centrifugal deformation
 - non-adiabatic treatment
 - simplified visibilities

Introduction	Pulsations of rapidly rotating stars	Ratios & phases ○●○○○○○○○○○○○○○	α Ophiuchi	Conclusion
Equations	5			

• non-pulsating star:

$$\mathcal{I} = \iint_{\mathrm{Vis.Surf.}} I(\mathbf{g}_{\mathrm{eff}}, T_{\mathrm{eff}}, \mu) \vec{e}_{\mathrm{obs.}} \cdot \vec{dS}$$

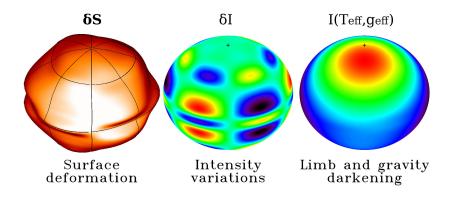
• pulsating star:

$$\delta \mathcal{I} = \underbrace{\int \int_{\delta \text{Vis.Surf.}} \mathcal{I}(\mathbf{g}_{\text{eff}}, \mathcal{T}_{\text{eff}}, \mu) \vec{e}_{\text{obs.}} \cdot d\vec{S}}_{\text{Vis.Surf.}} \\ + \underbrace{\int \int_{\text{Vis.Surf.}} \delta I(\mathbf{g}_{\text{eff}}, \mathcal{T}_{\text{eff}}, \mu) \vec{e}_{\text{obs.}} \cdot d\vec{S}}_{\text{Vis.Surf.}} \\ + \underbrace{\int \int_{\text{Vis.Surf.}} I(\mathbf{g}_{\text{eff}}, \mathcal{T}_{\text{eff}}, \mu) \vec{e}_{\text{obs.}} \cdot \delta(d\vec{S})}_{\text{Vis.Surf.}}$$

< 注→

э

In				

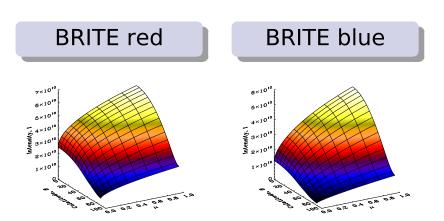

Ratios & phases

 α Ophiuchi

3 •

Conclusion

Calculating visibilities


In				

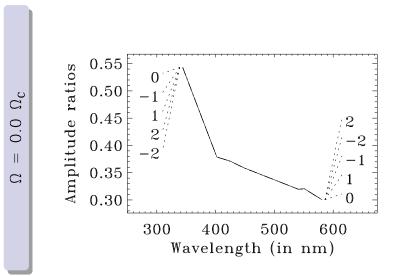
Ratios & phases

 α Ophiuchi

Conclusion

Intensities

• intensities also available for other photometric systems

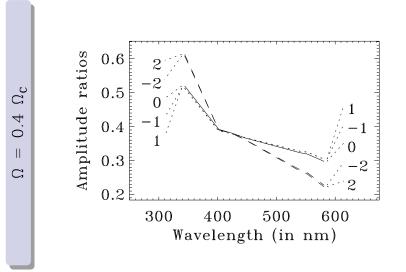


Ratios & phases

 α Ophiuchi

Conclusion

Amplitude ratios for the n = 6, $\ell = 2$ modes ($i = 30^{\circ}$)

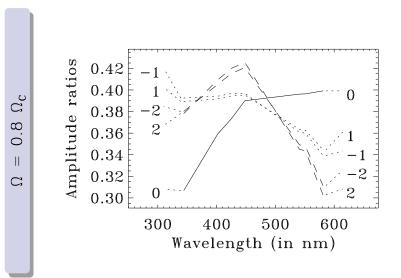


Ratios & phases

 α Ophiuchi

Conclusion

Amplitude ratios for the n = 6, $\ell = 2$ modes ($i = 30^{\circ}$)

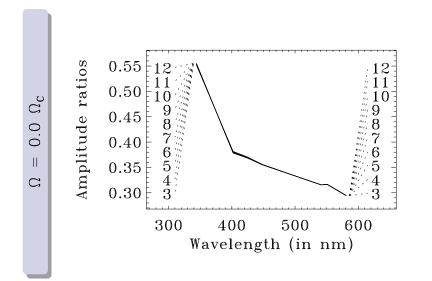

Pulsations of rapidly rotating stars

Ratios & phases

 α Ophiuchi

Conclusion

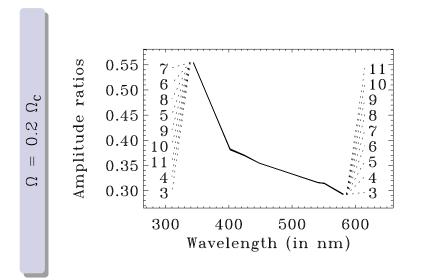
Amplitude ratios for the n = 6, $\ell = 2$ modes ($i = 30^{\circ}$)



Ratios & phases

 α Ophiuchi

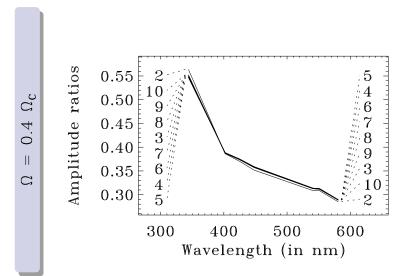
Conclusion



Ratios & phases

 α Ophiuchi

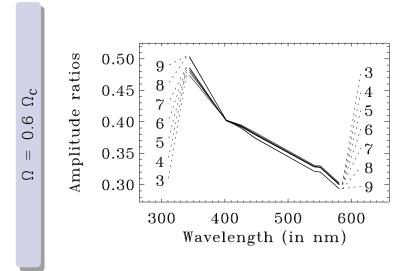
Conclusion



Ratios & phases

 α Ophiuchi

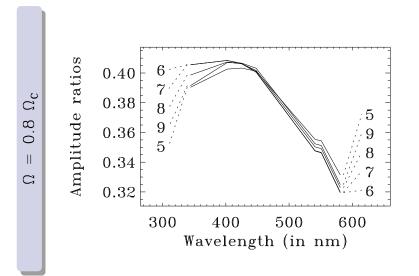
Conclusion



Ratios & phases

 α Ophiuchi

Conclusion



Ratios & phases

 α Ophiuchi

Conclusion

Pulsations of rapidly rotating stars

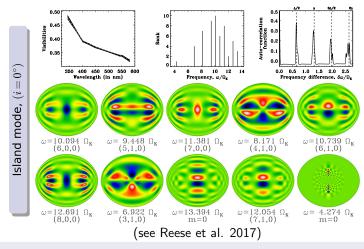
Ratios & phases

 α Ophiuchi

Conclusion

Towards mode identification?

- group modes together according to similar amplitude ratios
- hopefully you will get modes with similar quantum numbers
- similar structure expected from asymptotic ray theory (Pasek et al. 2012)


Pulsations of rapidly rotating stars

Ratios & phases

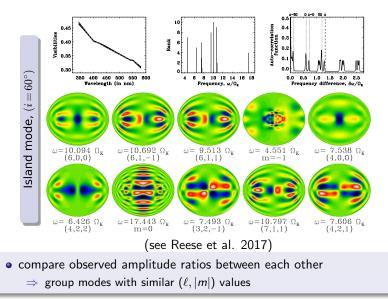
 α Ophiuchi

Conclusion

Multi-colour mode identification

compare observed amplitude ratios between each other

 \Rightarrow group modes with similar $(\ell, |m|)$ values


Pulsations of rapidly rotating stars

Ratios & phases

 α Ophiuchi

Conclusion

Multi-colour mode identification

Pulsations of rapidly rotating stars

Ratios & phases

 α Ophiuchi

Conclusion

Multi-colour mode identification

Model	Success	Isl. prop.
Ad. $(2 M_{\odot})$	0.564	0.0115
Ad. (2 M_{\odot})	0.145	0.0115
PNA (1.8 M_{\odot})	0.469	0.0330
PNA (1.8 M_{\odot})	0.201	0.0330

- PNA = pseudo non-adiabatic
- Geneva photometric system
- BRITE photometric system

Pulsations of rapidly rotating stars

Ratios & phases

 α Ophiuchi

< ∃→

э

Conclusion

Multi-colour mode identification

Model	Success	Isl. prop.	Model	Success
Ad. (2 M_{\odot})	0.564	0.0115	BRITE	0.201
Ad. $(2 M_{\odot})$	0.145	0.0115		0.182
PNA (1.8 M _☉)	0.469	0.0330	B, G	
PNA (1.8 M _o)	0.201	0.0330	U, B, G	0.327
			- U, B1, B, G	0.380
PNA = pseud	do non-adia	batic	U, B1, B, b2, G	0.437
 Geneva photo 	ometric syst	em	U, B1, B, b2, V1, G	0.456
	· · · · ·		U, B1, B, b2, V1, V, G	0.469
BRITE photo	metric syst	em		

Pulsations of rapidly rotating stars

Ratios & phases

 α Ophiuchi

.⊒...>

Conclusion

Multi-colour mode identification

Summary

- above strategy works for
 - 3 or more colour bands
 - stars with many acoustic frequencies in asymptotic regime
 - $\bullet\,$ hence, ideal for $\delta\,$ Scuti stars

Pulsations of rapidly rotating stars

Ratios & phases

 α Ophiuchi

∃ ⊳

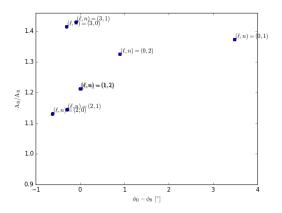
Conclusion

Multi-colour mode identification

Summary

- above strategy works for
 - 3 or more colour bands
 - stars with many acoustic frequencies in asymptotic regime
 - $\bullet\,$ hence, ideal for $\delta\,$ Scuti stars

• what about stars with few modes/few colours?


Pulsations of rapidly rotating stars

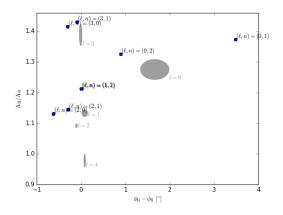
Ratios & phases

 α Ophiuchi

Conclusion

Amplitude ratios and phase differences

• Here: 9 M_{\odot} , $T_{\rm eff} = 23493$, $\log g = 4.24$


Introduction

Ratios & phases

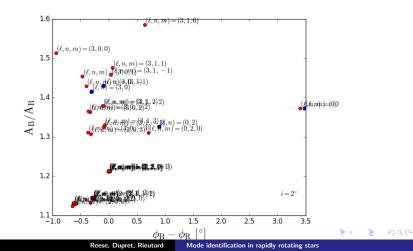
 α Ophiuchi

Conclusion

Amplitude ratios and phase differences

• Here: 9 M $_{\odot}$, $T_{\rm eff}$ = 23493, log g = 4.24

• Handler et al. (2017): 9.5-10 ${\rm M}_{\odot}$, $T_{\rm eff}=22000\pm600$ K, $\log g=3.85\pm0.05$

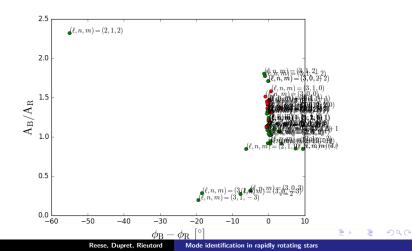

Ratios & phases

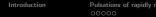
 α Ophiuchi

Conclusion

Amplitude ratios and phase differences

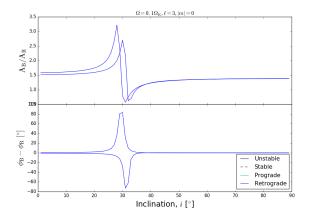
 $\Omega=0.1\Omega_{\rm K}$


Ratios & phases


 α Ophiuchi

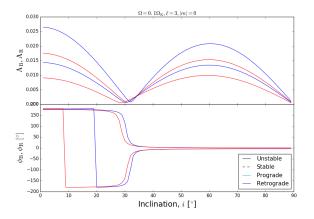
Conclusion

Amplitude ratios and phase differences


 $\Omega=0.5\Omega_{\rm K}$

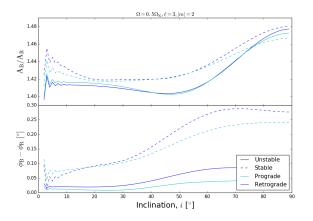
Ratios & phases α Ophiuchi

Conclusion

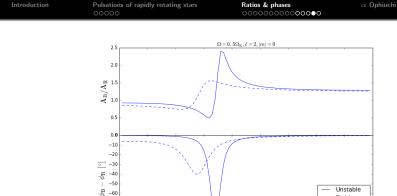


 sharp spikes result from amplitudes going to zero at different inclinations

Ratios & phases


 α Ophiuchi

Conclusion



• sharp spikes result from amplitudes going to zero at different inclinations

Ratios & phases

- sharp spikes result from amplitudes going to zero at different inclinations
- similar amplitude ratios and phases for modes with the same $(\ell, |m|)$ values

sharp spikes result from amplitudes going to zero at different inclinations

40

Inclination, i [°]

50

60

70

- similar amplitude ratios and phases for modes with the same $(\ell, |m|)$ values
- but not always ...

-70

-80

-90 L

10

20

30

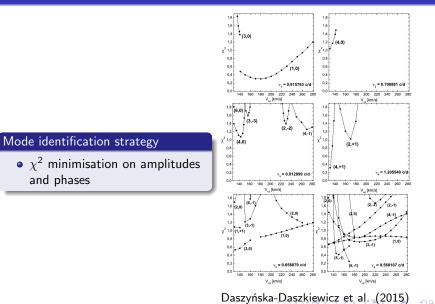
Stable

80

Prograde

Retrograde

Introduction


Pulsations of rapidly rotating stars

Ratios & phases

 α Ophiuchi

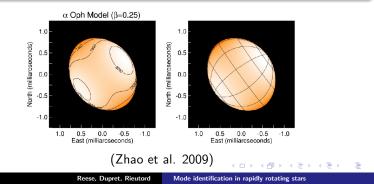
Conclusion

Mode identification strategy

< ∃⇒

Introduction

Pulsations of rapidly rotating stars
 Pulsation calculations


B Ratios & phases

- Calculating mode visibilities
- Towards mode identification?
- Amplitude ratios and phase differences

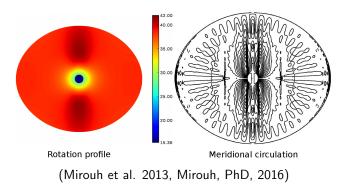
(4) α Ophiuchi

Introd	uction	Pulsations of rapidly rotating stars	Ratios & phases	α Ophiuchi	Conclusion
α	Ophiuc	hi			
	• bina 201	ary system: A5III + K6V (C 1)	Cowley 1969 et al. $+$ I	Hinkley et al.	

- $v_{\rm eq} = 240 {\rm km.s^{-1}}$
- polar and equatorial radii determined through interferometry (Zhao et al. 2009)
- 57 pulsation frequencies from photometry (Monnier et al. 2010)

Introduction

Pulsations of rapidly rotating stars


Ratios & phases

 α Ophiuchi

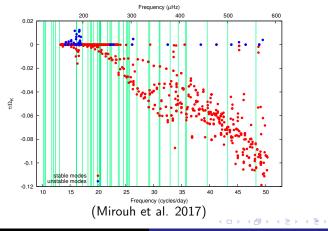
≣⇒

Conclusion

Characteristics of the model

• calculated with ESTER

- mass: 2.22 M_{\odot}
- Z = 0.02, X = 0.7, $X_c = 0.26$


Introduction	Pulsations of rapidly rotating stars	Ratios & phases

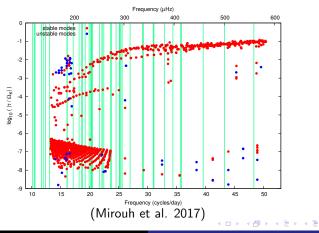
lpha Ophiuchi

Conclusion

Mode excitation

• new fully non-adiabatic calculations

In	••	~	А	 ~	~	


Ratios & phases

 α Ophiuchi

Conclusion

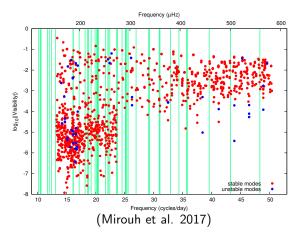
Mode excitation

- new fully non-adiabatic calculations
- unstable modes appear

Int				

Ratios & phases

 α Ophiuchi


< ≣ >

≣ ▶

э

Conclusion

Mode visibilities

< ∃→

Introduction

Pulsations of rapidly rotating stars
 Pulsation calculations

B Ratios & phases

- Calculating mode visibilities
- Towards mode identification?
- Amplitude ratios and phase differences

(4) α Ophiuchi

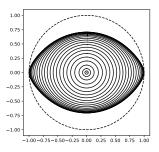
In				

- rotation complicates mode identification techniques
- however, improved theoretical predictions
 - create database with these results
 - adapt/develop mode identification tools
- need for multicolour observations
 - BRITE, PLATO 2.0, CoRoT?, + ground follow-up

Introduction	Pulsations of rapidly rotating stars	Ratios & phases	α Ophiuchi	Conclusion

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の々ぐ

Introduction					


Ratios & phases

 α Ophiuchi

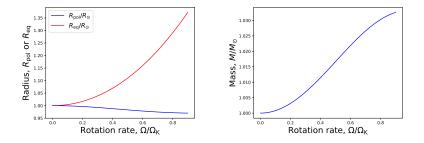
Conclusion

Model deformation tool

- deform 1D model by introducing centrifugal deformation
- useful for:
 - evolved models (while waiting for ESTER)
 - rapidly rotating planets
 - parametric study
- iterative process which alternates between:
 - solving Poisson's equation
 - finding level surfaces
- similar to SCF method (MacGregor et al. 2007)
- preserves P(
 ho) profile, but not mass

Model S at $0.9\,\Omega_{\rm K}$

In				


Ratios & phases

 α Ophiuchi

э.

Conclusion

Model deformation tool

• radius and mass as a function of rotation rate

Introduction					

Ratios & phases

 α Ophiuchi

Conclusion

Pulsation equations

i [ω

• and perturbed EOS, opacities, and boundary conditions

In	••	~	А	~	~	

Ratios & phases

 α Ophiuchi

Conclusion

Pulsation equations

Summary

• final result: a system of 10 equations with 10 unknowns:

$$\frac{\delta P}{P_o}, \quad \vec{\xi}, \quad \frac{\delta S}{c_{\rm p}}, \quad \delta \vec{F}^{\rm R}, \quad \frac{\delta T}{T_o}, \quad \Psi$$
 (1)

• although some of these variables can be cancelled algebraically, they are needed to ensure good convergence

In				

Ratios & phases

 α Ophiuchi

Conclusion

Numerical implementation

- explicit expression in spheroidal coordinates
- projection onto spherical harmonics
- radial discretisation using Chebyshev polynomials over multiple domains

$N_{\rm r}$	$N_{ m h}$	Memory (in Gb)	Time (in min)	Num. proc.
400	10	3.5		
400	15	7.9		
400	20	13.4	5	4
400	29	28.0	10	8
400	40	52.7	22	8
400	50	82.3	26	16

Estimated accuracy

- the problem is stiff: reduced numerical accuracy
- estimated accuracy based on variational expression:
 - $\bullet~frequencies:~\sim 10^{-4}$
 - ${\ensuremath{\, \circ }}$ excitation/damping rates: 10^{-2} to 10^{-1}
- stability may be improved through a hybrid approach: adiabatic in the centre, non-adiabatic near the surface